NCS2553

3-Channel Video Amp with Standard Definition Reconstruction Filters

Description

The NCS2553 is a 3-channel high speed video amplifier with 6th order butterworth standard definition reconstruction filter.

All three channels can accommodate either all component and RGB video signals or composite and S-Video signals. All channels can accept DC or AC coupled signals. If AC coupled, the internal clamps are employed. The outputs can drive both AC and DC coupled 150 Ω loads.

It is designed to be compatible with most digital–to–analog converters (DAC) embedded in most video processors.

Feature

- Three 6th Order Standard Definition 8 MHz Filters
- Internally Fixed Gain = 6 dB
- AC– or DC– Coupled Inputs
- AC– or DC– Coupled Outputs
- Integrated Level Shifter
- Operating Voltage +5 V
- Available in a SOIC–8 Package
- These are Pb–Free Devices

Applications

- Digital Set–Top Box
- DVD / Video Players and Related
- SD–TV
- Video On Demand (VOD)
- Video Recorders

MARKING DIAGRAM

http://onsemi.com

PINOUT

ORDERING INFORMATION

<table>
<thead>
<tr>
<th>Device</th>
<th>Package</th>
<th>Shipping†</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCS2553DG</td>
<td>SOIC–8</td>
<td>98 Units / Rail</td>
</tr>
<tr>
<td></td>
<td>(Pb–Free)</td>
<td></td>
</tr>
<tr>
<td>NCS2553DR2G</td>
<td>SOIC–8</td>
<td>2500 / Tape & Reel</td>
</tr>
<tr>
<td></td>
<td>(Pb–Free)</td>
<td></td>
</tr>
</tbody>
</table>

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
Figure 1. Block Diagram

PIN FUNCTION AND DESCRIPTION

<table>
<thead>
<tr>
<th>Pin</th>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>IN1</td>
<td>Input</td>
<td>Video Input 1 for Video Signal featuring a frequency bandwidth compatible with Standard Definition Video (8 MHz) – Channel 1</td>
</tr>
<tr>
<td>2</td>
<td>IN2</td>
<td>Input</td>
<td>Video Input 2 for Video Signal featuring a frequency bandwidth compatible with Standard Definition Video (8 MHz) – Channel 2</td>
</tr>
<tr>
<td>3</td>
<td>IN3</td>
<td>Input</td>
<td>Video Input 3 for Video Signal featuring a frequency bandwidth compatible with Standard Definition Video (8 MHz) – Channel 3</td>
</tr>
<tr>
<td>4</td>
<td>VCC</td>
<td>Power</td>
<td>Device Power Supply Voltage: +5 V</td>
</tr>
<tr>
<td>5</td>
<td>GND</td>
<td>Power</td>
<td>Connected to Ground</td>
</tr>
<tr>
<td>6</td>
<td>OUT3</td>
<td>Output</td>
<td>SD Video Output 3 – Channel 3</td>
</tr>
<tr>
<td>7</td>
<td>OUT2</td>
<td>Output</td>
<td>SD Video Output 2 – Channel 2</td>
</tr>
<tr>
<td>8</td>
<td>OUT1</td>
<td>Output</td>
<td>SD Video Output 1 – Channel 1</td>
</tr>
</tbody>
</table>

ATTRIBUTES

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESD</td>
<td></td>
</tr>
<tr>
<td>Human Body Model</td>
<td>8 kV</td>
</tr>
<tr>
<td>Machine Model</td>
<td>400 V</td>
</tr>
<tr>
<td>Moisture Sensitivity (Note 3)</td>
<td>Level 1</td>
</tr>
<tr>
<td>Flammability Rating – Oxygen Index: 28 to 34</td>
<td>UL 94 V-0 @ 0.125 in</td>
</tr>
</tbody>
</table>

1. Human Body Model (HBM): R = 1500 Ω, C = 100 pF
2. Machine Model (MM)
3. For additional information, see Application Note AND8003/D.
MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Rating</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Supply Voltages</td>
<td>V_{CC}</td>
<td>−0.35</td>
<td>Vdc</td>
</tr>
<tr>
<td></td>
<td></td>
<td>≤ V_{CC} ≤ 5.5</td>
<td></td>
</tr>
<tr>
<td>Input Voltage Range</td>
<td>V_{i}</td>
<td>−0.3</td>
<td>Vdc</td>
</tr>
<tr>
<td></td>
<td></td>
<td>≤ V_{CC}</td>
<td></td>
</tr>
<tr>
<td>Input Differential Voltage Range</td>
<td>V_{ID}</td>
<td>V_{i}</td>
<td>Vdc</td>
</tr>
<tr>
<td>Output Current</td>
<td>I_{O}</td>
<td>50</td>
<td>mA</td>
</tr>
<tr>
<td>Maximum Junction Temperature (Note 4)</td>
<td>T_{J}</td>
<td>150</td>
<td>°C</td>
</tr>
<tr>
<td>Operating Ambient Temperature</td>
<td>T_{A}</td>
<td>−40 to +85</td>
<td>°C</td>
</tr>
<tr>
<td>Storage Temperature Range</td>
<td>T_{stg}</td>
<td>−60 to +150</td>
<td>°C</td>
</tr>
<tr>
<td>Power Dissipation</td>
<td>P_{D}</td>
<td>(See Graph)</td>
<td>mW</td>
</tr>
<tr>
<td>Thermal Resistance, Junction–to–Air</td>
<td>R_{JA}</td>
<td>112.7</td>
<td>°C/W</td>
</tr>
</tbody>
</table>

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

4. Power dissipation must be considered to ensure maximum junction temperature (T_{J}) is not exceeded.

Maximum Power Dissipation

The maximum power that can be safely dissipated is limited by the associated rise in junction temperature.

For the plastic packages, the maximum safe junction temperature is 150°C. If the maximum is exceeded momentarily, proper circuit operation will be restored as soon as the die temperature is reduced. Leaving the device in the “overheated” condition for an extended period can result in device burnout. To ensure proper operation, it is important to observe the derating curves.

![Figure 2. Power Dissipation vs Temperature](http://onsemi.com)
DC ELECTRICAL CHARACTERISTICS

(VCC = +5.0 V, TA = 25°C, 0.1 μF AC coupled inputs, Rsource = 37.5 Ω, 220 μF AC coupled outputs into 150 Ω load, referenced to 400 kHz, unless otherwise specified)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Characteristics</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>VCC</td>
<td>Supply Voltage Range</td>
<td></td>
<td>4.75</td>
<td>5.0</td>
<td>5.25</td>
<td>V</td>
</tr>
<tr>
<td>ICC</td>
<td>Power Supply Current</td>
<td>No Load</td>
<td>23</td>
<td>30</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>VIN</td>
<td>Input Common Mode Voltage Range</td>
<td>Referenced to GND if DC–Coupled</td>
<td>GND</td>
<td>1.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PSRR</td>
<td>Power Supply Rejection</td>
<td>DC (All Channels)</td>
<td>−50</td>
<td></td>
<td></td>
<td>dB</td>
</tr>
</tbody>
</table>

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

AC ELECTRICAL CHARACTERISTICS

(VCC = +5.0 V, TA = 25°C, 0.1 μF AC coupled inputs, Rsource = 37.5 Ω, 220 μF AC coupled outputs into 150 Ω load, referenced to 400 kHz, unless otherwise specified)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Characteristics</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>AVOL</td>
<td>Voltage Gain (Note 5)</td>
<td>VIN = 1 V (All Channels)</td>
<td>5.8</td>
<td>6.0</td>
<td>6.2</td>
<td>dB</td>
</tr>
<tr>
<td>BW</td>
<td>Low Pass Filter Bandwidth</td>
<td>−1 dB (Note 6)</td>
<td>5.5</td>
<td>7.2</td>
<td></td>
<td>MHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>−3 dB</td>
<td>9.0</td>
<td></td>
<td></td>
<td>MHz</td>
</tr>
<tr>
<td>AR</td>
<td>Stop–Band Attenuation (Rejection)</td>
<td>at 27 MHz</td>
<td>45</td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>dG</td>
<td>Differential Gain</td>
<td></td>
<td>0.3</td>
<td></td>
<td></td>
<td>%</td>
</tr>
<tr>
<td>dφ</td>
<td>Differential Phase</td>
<td></td>
<td>0.6</td>
<td></td>
<td></td>
<td>°</td>
</tr>
<tr>
<td>THD</td>
<td>Total Harmonic Distortion</td>
<td>VOUT = 1.8 VPP @ 1 MHz</td>
<td>0.4</td>
<td></td>
<td></td>
<td>%</td>
</tr>
<tr>
<td>Xtalk</td>
<td>Channel–to–Channel Crosstalk</td>
<td>VOUT = 1.8 VPP @ 1 MHz</td>
<td>60</td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>SNR</td>
<td>Signal–to–Noise Ratio</td>
<td>NTSC–7, 100 kHz to 4.2 MHz (Note 7)</td>
<td>75</td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>Tpd</td>
<td>Propagation Delay</td>
<td>Input–to–Output, 4.5 MHz</td>
<td>60</td>
<td></td>
<td></td>
<td>nsec</td>
</tr>
<tr>
<td>ΔGD</td>
<td>Group Delay Variation from 100 kHz to 8 MHz</td>
<td></td>
<td>27</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
</tbody>
</table>

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

5. 100% of tested IC fit to the bandwidth tolerance.
6. Guaranteed by design and characterization.
7. SNR = 20 x log (714 mV/RMS Noise)
TYPICAL CHARACTERISTICS

$V_{CC} = +5.0 \text{ V}, R_{source} = 37.5 \Omega, T_A = 25^\circ \text{C}, 0.1 \mu \text{F AC–coupled inputs, 220} \mu \text{F AC–coupled outputs into 150} \Omega \text{ referenced to 400 kHz, all channels, unless otherwise specified}$

![Frequency Response Graph](image1)

![Channel-to-Channel Crosstalk Graph](image2)

![Group Delay Graph](image3)

![Propagation Delay Graph](image4)

![PSRR vs Frequency (No Bypass Capacitor) Graph](image5)

![PSRR vs Frequency (Bypass Capacitor) Graph](image6)
TYPICAL CHARACTERISTICS

$V_{CC} = +5.0\, V$, $R_{source} = 37.5\, \Omega$, $T_A = 25^\circ C$, 0.1 μF AC–coupled inputs, 220 μF AC–coupled outputs into 150 Ω referenced to 400 kHz, all channels, unless otherwise specified.

Figure 9. Gain Flatness

Figure 10. Differential Gain (NTSC 5 Steps Input Signal)

Figure 11. Differential Phase (NTSC 5 Steps Input Signal)

Figure 12. Normalized Frequency Response and Group Delay vs. Frequency
The NCS2553 triple video driver has been optimized for Standard Definition video applications covering the requirements of the CVBS, S–Video, 480i/525i & 576i/625i standards. All the 3 channels feature the same specifications and similar behaviors guaranteed by a high channel–to–channel crosstalk isolation (down to 60 dB at 1 MHz). Each channel provides an internal voltage–to–voltage gain of 2 from its input to its output reducing the number of external components usually needed in the case of some discrete approaches (using stand–alone op amps). An internal level shifter is employed shifting up the output voltage by adding an offset of about 280 mV. This avoids sync pulse clipping and allows DC–coupled output to the 150 Ω video load. In addition, the NCS2553 integrates a 6th order Butterworth filter per channel with a 3 dB frequency bandwidth of 8 MHz. This allows rejecting out the aliases or unwanted over–sampling effects produced by the video DAC. Similarly, in the case of DVD recorders using ADC, this anti–aliasing filter (reconstruction filter) will avoid picture quality issues and will help to filter out parasitic signals caused by EMI interference.

A built–in diode–like clamp is used in the chip for each channel to support AC–coupled mode of operation. The clamp is active when the input signal goes below 0 V.

Figure 13 shows an example for which the external video source coming from the DAC is AC–coupled at the input and output. But thanks to the built–in transparent clamp and level shifter the device can operate in different configuration modes depending essentially on the DAC output signal level High and Low and how it fits the input common mode voltage of the video driver. When the configuration is DC–Coupled at the Inputs and Outputs the 0.1 μF and 220 μF coupling capacitors are no longer used, the clamps are in that case inactive; this configuration has the big advantage of being relatively low cost with the use of less external components.

The input is AC–coupled if for example the input–signal amplitude goes over the range 0 to 1.4 V or if the video source requires such a coupling. In some circumstances it may be necessary to auto–bias signals by the addition of a pull–up and pull–down resistor or only pull–up resistor (Typical 7.5 MΩ combined with the internal 800 kΩ pull–down) making the clamp inactive.

The output AC–coupling configuration has the advantage of eliminating DC ground loop with the drawback of making the device more sensitive to video line or field tilt issues in the case of a too low output coupling capacitor. In some cases it may be necessary to increase the nominal 220 μF capacitor value.
Figure 14. Typical Application Circuit
NOTES:
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.
6. 751−01 THRU 751−06 ARE OBSOLETE. NEW STANDARD IS 751−07.

<table>
<thead>
<tr>
<th>MILLIMETERS</th>
<th>INCHES</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>4.80</td>
</tr>
<tr>
<td>B</td>
<td>3.80</td>
</tr>
<tr>
<td>C</td>
<td>1.35</td>
</tr>
<tr>
<td>D</td>
<td>0.53</td>
</tr>
<tr>
<td>G</td>
<td>1.27</td>
</tr>
<tr>
<td>H</td>
<td>0.10</td>
</tr>
<tr>
<td>J</td>
<td>0.19</td>
</tr>
<tr>
<td>K</td>
<td>0.40</td>
</tr>
<tr>
<td>M</td>
<td>0.25</td>
</tr>
<tr>
<td>N</td>
<td>0.25</td>
</tr>
<tr>
<td>S</td>
<td>5.80</td>
</tr>
</tbody>
</table>

SOLDERING FOOTPRINT*

*For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

GENERIC MARKING DIAGRAM*

This information is generic. Please refer to device data sheet for actual part marking. Pb−Free indicator, “G” or microdot “”, may or may not be present. Some products may not follow the Generic Marking.
STYLE 1: PIN 1. EMITTER
- 2. COLLECTOR
- 3. SOURCE
- 4. DRAIN
- 5. GATE
- 6. SOURCE
- 7. COLLECTOR
- 8. EMITTER

STYLE 2: PIN 1. COLLECTOR, DIE, #1
- 2. SOURCE
- 3. SOURCE
- 4. DRAIN
- 5. SOURCE
- 6. SOURCE
- 7. COLLECTOR
- 8. SOURCE

STYLE 3: PIN 1. DRAIN, DIE #1
- 2. GATE
- 3. DRAIN
- 4. GATE
- 5. SOURCE
- 6. SOURCE
- 7. COLLECTOR
- 8. SOURCE

STYLE 4: PIN 1. ANODE
- 2. BASE, DIE #1
- 3. BASE, #2
- 4. SOURCE
- 5. SOURCE
- 6. SOURCE
- 7. ANODE
- 8. COMMON CATHODE

STYLE 5: PIN 1. DRAIN
- 2. DRAIN
- 3. DRAIN
- 4. DRAIN
- 5. SOURCE
- 6. SOURCE
- 7. SOURCE
- 8. SOURCE

STYLE 6: PIN 1. SOURCE
- 2. DRAIN
- 3. DRAIN
- 4. SOURCE
- 5. DRAIN
- 6. DRAIN
- 7. DRAIN
- 8. DRAIN

STYLE 7: PIN 1. INPUT
- 2. EXTERNAL BYPASS
- 3. THIRD STAGE SOURCE
- 4. GROUND
- 5. DRAIN
- 6. DRAIN
- 7. DRAIN
- 8. DRAIN

STYLE 8: PIN 1. COLLECTOR, DIE #1
- 2. BASE, #1
- 3. BASE, #2
- 4. COLLECTOR, #2
- 5. COLLECTOR, #2
- 6. EMITTER, #2
- 7. EMITTER, #1
- 8. COLLECTOR, #1

STYLE 9: PIN 1. EMITTER, COMMON
- 2. COLLECTOR, DIE #1
- 3. COLLECTOR, DIE #2
- 4. EMITTER, COMMON
- 5. EMITTER, COMMON
- 6. BASE, DIE #2
- 7. BASE, DIE #1
- 8. EMITTER, COMMON

STYLE 10: PIN 1. GROUND
- 2. BIAS 1
- 3. OUTPUT
- 4. GROUND
- 5. GROUND
- 6. GROUND
- 7. GROUND
- 8. GROUND

STYLE 11: PIN 1. SOURCE
- 2. GATE 1
- 3. SOURCE
- 4. SOURCE
- 5. DRAIN 2
- 6. DRAIN 2
- 7. DRAIN 2
- 8. DRAIN 2

STYLE 12: PIN 1. SOURCE
- 2. GATE 1
- 3. SOURCE
- 4. SOURCE
- 5. DRAIN 2
- 6. DRAIN 2
- 7. DRAIN 2
- 8. DRAIN 2

STYLE 13: PIN 1. N.C.
- 2. SOURCE
- 3. SOURCE
- 4. GATE
- 5. DRAIN
- 6. GATE
- 7. DRAIN
- 8. DRAIN

STYLE 14: PIN 1. N-SOURCE
- 2. SOURCE
- 3. SOURCE
- 4. P-GATE
- 5. P-DRAIN
- 6. P-DRAIN
- 7. N-DRAIN
- 8. N-DRAIN

STYLE 15: PIN 1. ANODE
- 2. ANODE
- 3. ANODE
- 4. ANODE
- 5. DRAIN 2
- 6. DRAIN 2
- 7. DRAIN 2
- 8. DRAIN 2

STYLE 16: PIN 1. SOURCE (N)
- 2. GATE (N)
- 3. SOURCE
- 4. GATE (P)
- 5. DRAIN
- 6. DRAIN
- 7. DRAIN
- 8. DRAIN

STYLE 17: PIN 1. VCC
- 2. V2OUT
- 3. VIOUT
- 4. TXE
- 5. RXE
- 6. VEE
- 7. GND
- 8. ACC

STYLE 18: PIN 1. I/O LINE 1
- 2. COMMON CATHODE/VCC
- 3. COMMON CATHODE/VCC
- 4. I/O LINE 3
- 5. COMMON ANODE/GND
- 6. COMMON ANODE/GND
- 7. COMMON ANODE/GND
- 8. COMMON ANODE/GND

STYLE 19: PIN 1. LINE 1 IN
- 2. COMMON ANODE/GND
- 3. COMMON ANODE/GND
- 4. LINE 1 IN
- 5. LINE 1 OUT
- 6. COMMON ANODE/GND
- 7. COMMON ANODE/GND
- 8. LINE 1 OUT

STYLE 20: PIN 1. GND
- 2. GND
- 3. GND
- 4. GND
- 5. SOURCE
- 6. SOURCE
- 7. SOURCE
- 8. GND

STYLE 21: PIN 1. CATHODE 1
- 2. CATHODE 2
- 3. CATHODE 3
- 4. CATHODE 4
- 5. CATHODE 5
- 6. COMMON ANODE
- 7. COMMON ANODE
- 8. COMMON ANODE

STYLE 22: PIN 1. I/O LINE 1
- 2. COMMON CATHODE/VCC
- 3. COMMON CATHODE/VCC
- 4. I/O LINE 3
- 5. COMMON ANODE/GND
- 6. COMMON ANODE/GND
- 7. COMMON ANODE/GND
- 8. COMMON ANODE/GND

STYLE 23: PIN 1. LINE 1 IN
- 2. COMMON ANODE/GND
- 3. COMMON ANODE/GND
- 4. LINE 1 IN
- 5. LINE 1 OUT
- 6. COMMON ANODE/GND
- 7. COMMON ANODE/GND
- 8. COMMON ANODE/GND

STYLE 24: PIN 1. BASE
- 2. EMITTER
- 3. COLLECTOR
- 4. COLLECTOR
- 5. COLLECTOR
- 6. COLLECTOR
- 7. COLLECTOR
- 8. COLLECTOR

STYLE 25: PIN 1. VIN
- 2. N/C
- 3. RXE
- 4. GND
- 5. IOUT
- 6. IOUT
- 7. IOUT
- 8. IOUT

STYLE 26: PIN 1. GND
- 2. DRAIN
- 3. GATE
- 4. SOURCE
- 5. SOURCE
- 6. SOURCE
- 7. SOURCE
- 8. DRAIN

STYLE 27: PIN 1. I/O LIMIT
- 2. INPUT+
- 3. SOURCE
- 4. SOURCE
- 5. SOURCE
- 6. SOURCE
- 7. SOURCE
- 8. DRAIN

STYLE 28: PIN 1. SW_TO_GND
- 2. DASIC
- 3. DASIC
- 4. GND
- 5. V_MON
- 6. VBULK
- 7. VBULK
- 8. VIN

Document Number: 98ASB42564B **Electronic versions are uncontrolled except when accessed directly from the Document Repository.**

Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.

© Semiconductor Components Industries, LLC, 2019

www.onsemi.com

onsemi and OnSemi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.