Zener Diodes, 24 and 40 Watt Peak Power

SOT-23 Dual Common Anode Zeners

MMBZHxxxALT1G Series, SZMMBZHxxxALT1G Series

These dual monolithic silicon Zener diodes are designed for applications requiring transient overvoltage ESD protection capability. They are intended for use in voltage and ESD sensitive equipment such as computers, printers, business machines, communication systems, medical equipment and other applications. Their dual junction common anode design protects two separate lines using only one package. These devices are ideal for situations where board space is at a premium.

Features

- SOT-23 Package Allows Either Two Separate Unidirectional Configurations or a Single Bidirectional Configuration
- Standard Zener Breakdown Voltage Range 5.6 V to 47 V
- Peak Power 24 or 40 W @ 1.0 ms (Unidirectional), per Figure 6 Waveform
- ESD Rating:
 - Class 3B (> 16 kV) per the Human Body Model
 - Class C (> 400 V) per the Machine Model
 - IEC61000-4-2 Level 4, ±30 kV Contact Discharge
- Low Leakage < 5.0 μA
- Flammability Rating UL 94 V-0
- 175°C T_{J(MAX)} Rated for High Temperature, Mission Critical Applications
- SZ Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb-Free and are RoHS Compliant

Mechanical Characteristics

CASE: Void-free, transfer-molded, thermosetting plastic case

FINISH: Corrosion resistant finish, easily solderable

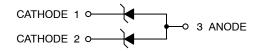
MAXIMUM CASE TEMPERATURE FOR SOLDERING PURPOSES:

260°C for 10 Seconds

Package designed for optimal automated board assembly Small package size for high density applications Available in 8 mm Tape and Reel

Use the Device Number to order the 7 inch/3,000 unit reel. Replace the "T1" with "T3" in the Device Number to order the 13 inch/10,000 unit reel.

1



ON Semiconductor®

www.onsemi.com

SOT-23 CASE 318 STYLE 12

MARKING DIAGRAM

XXX = Specific Device Code

M = Date Code

■ = Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering and shipping information on page 2 of this data sheet.

DEVICE MARKING INFORMATION

See specific marking information in the device marking column of the table on page 3 of this data sheet.

MAXIMUM RATINGS

Rating	Symbol	Value	Unit	
Peak Power Dissipation @ 1.0 ms (Note 1) MMBZH5V6ALT1G thru MMBZH9V1ALT1G @ T _L ≤ 25°C MMBZH12VALT1G thru MMBZH47VALT1G	P _{pk}	24 40	W	
Total Power Dissipation on FR-5 Board (Note 2) @ T _A = 25°C Derate above 25°C	P _D	225 1.5	mW mW/°C	
Thermal Resistance Junction-to-Ambient	$R_{ hetaJA}$	540	°C/W	
Junction and Storage Temperature Range	T _J , T _{stg}	– 55 to +175	°C	
Lead Solder Temperature – Maximum (10 Second Duration)	TL	260	°C	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

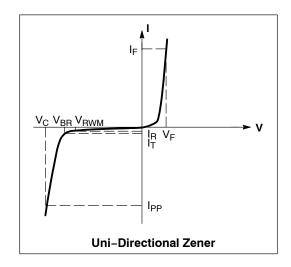
1. Non-repetitive current pulse per Figure 6 and derate above $T_A = 25^{\circ}C$ per Figure 7.

- 2. $FR-5 = 1.0 \times 0.75 \times 0.62$ in.

ORDERING INFORMATION

Device	Package	Shipping [†]
MMBZHxVxALT1G	SOT-23 (Pb-Free)	3,000 / Tape & Reel
SZMMBZHxVxALT1G*	SOT-23 (Pb-Free)	3,000 / Tape & Reel
MMBZHxVxALT3G	SOT-23 (Pb-Free)	10,000 / Tape & Reel
SZMMBZHxVxALT3G*	SOT-23 (Pb-Free)	10,000 / Tape & Reel
MMBZHxxVALT1G	SOT-23 (Pb-Free)	3,000 / Tape & Reel
SZMMBZHxxVALT1G*	SOT-23 (Pb-Free)	3,000 / Tape & Reel
MMBZHxxVALT3G	SOT-23 (Pb-Free)	10,000 / Tape & Reel
SZMMBZHxxVALT3G*	SOT-23 (Pb-Free)	10,000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.


^{*}SZ Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable

ELECTRICAL CHARACTERISTICS

(T_A = 25°C unless otherwise noted)

UNIDIRECTIONAL (Circuit tied to Pins 1 and 3 or 2 and 3)

Symbol	Parameter
I _{PP}	Maximum Reverse Peak Pulse Current
V _C	Clamping Voltage @ I _{PP}
V _{RWM}	Working Peak Reverse Voltage
I _R	Maximum Reverse Leakage Current @ V _{RWM}
V _{BR}	Breakdown Voltage @ I _T
ΙΤ	Test Current
ΘV _{BR}	Maximum Temperature Coefficient of V _{BR}
I _F	Forward Current
V _F	Forward Voltage @ I _F
Z _{ZT}	Maximum Zener Impedance @ I _{ZT}
I _{ZK}	Reverse Current
Z _{ZK}	Maximum Zener Impedance @ I _{ZK}

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted) UNIDIRECTIONAL (Circuit tied to Pins 1 and 3 or Pins 2 and 3)

 $(V_F = 0.9 \text{ V Max} @ I_F = 10 \text{ mA}) (5\% \text{ Tolerance})$

24 WATTS

				Breakdown Voltage Max Zener Impedance (Note 4)				V _C @ I _{PP} (Note 5)					
	Device	V _{RWM}	I _R @ V _{RWM}	V _{BR}	(Note 3)	(V)	@ I _T	Z _{ZT} @ I _{ZT}	Z _{ZK} (@ I _{ZK}	v _c	Ipp	ΘV _{BR}
Device*	Marking	Volts	μА	Min	Nom	Max	mA	Ω	Ω	mA	٧	Α	mV/°C
MMBZH5V6ALT1G**	5A6	3.0	5.0	5.32	5.6	5.88	20	11	1600	0.25	8.0	3.0	1.26
MMBZH6V2ALT1G**	6A2	3.0	0.5	5.89	6.2	6.51	1.0	-	-	-	8.7	2.76	2.80
MMBZH6V8ALT1G**	6A8	4.5	0.5	6.46	6.8	7.14	1.0	-	-	-	9.6	2.5	3.4
MMBZH9V1ALT1G**	9A1	6.0	0.3	8.65	9.1	9.56	1.0	-	-	-	14	1.7	7.5

 $(V_F = 0.9 \text{ V Max} @ I_F = 10 \text{ mA}) (5\% \text{ Tolerance})$

40 WATTS

			I _R @	Breakdown Voltage				V _C @ I _{PF}			
	Device		V _{RWM}	V _{BF}	V_{BR} (Note 3) (V)			V _C	I _{PP}	ΘV _{BR}	
Device*	Marking	Volts	nA	Min	Nom	Max	mA	٧	Α	mV/°C	
MMBZH12VALT1G**	12A	8.5	200	11.40	12	12.60	1.0	17	2.35	7.5	
MMBZH15VALT1G**	15A	12	50	14.25	15	15.75	1.0	21	1.9	12.3	
MMBZH16VALT1G**	16A	13	50	15.20	16	16.80	1.0	23	1.7	13.8	
MMBZH18VALT1G	ACJ	14.5	50	17.10	18	18.90	1.0	25	1.6	15.3	
MMBZH20VALT1G**	20A	17	50	19.00	20	21.00	1.0	28	1.4	17.2	
MMBZH27VALT1G**	27A	22	50	25.65	27	28.35	1.0	40	1.0	24.3	
MMBZH33VALT1G**	33A	26	50	31.35	33	34.65	1.0	46	0.87	30.4	
MMBZH47VALT1G**	47A	38	50	44.65	47	49.35	1.0	54	0.74	43.1	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

V_{BR} measured at pulse test current I_T at an ambient temperature of 25°C.
 Z_{ZT} and Z_{ZK} are measured by dividing the AC voltage drop across the device by the AC current applied. The specified limits are for I_{Z(AC)} = 0.1 I_{Z(DC)}, with the AC frequency = 1.0 kHz.
 Surge current waveform per Figure 6 and derate per Figure 7

^{*} Includes SZ-prefix devices where applicable.

^{**}AEC-Q release available upon request.

TYPICAL CHARACTERISTICS

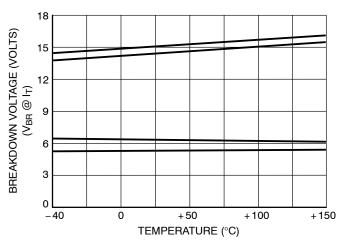


Figure 1. Typical Breakdown Voltage versus Temperature

(Upper curve for each voltage is bidirectional mode, lower curve is unidirectional mode)

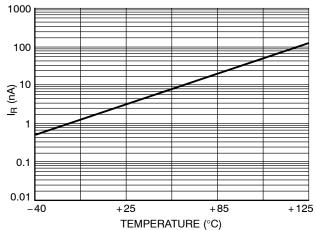


Figure 2. Typical Leakage Current versus Temperature

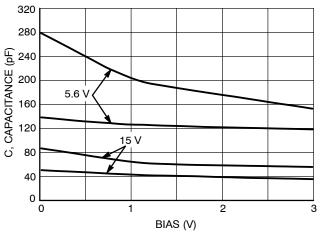


Figure 3. Typical Capacitance versus Bias Voltage
(Upper curve for each voltage is unidirectional mode,
lower curve is bidirectional mode)

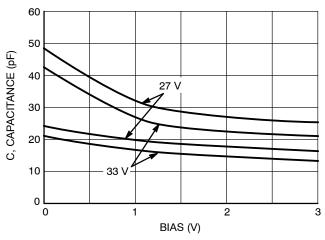


Figure 4. Typical Capacitance versus Bias Voltage (Upper curve for each voltage is unidirectional mode, lower curve is bidirectional mode)

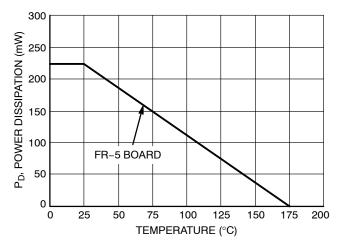


Figure 5. Steady State Power Derating Curve

TYPICAL CHARACTERISTICS

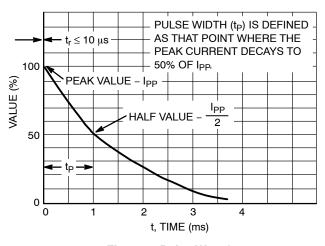


Figure 6. Pulse Waveform

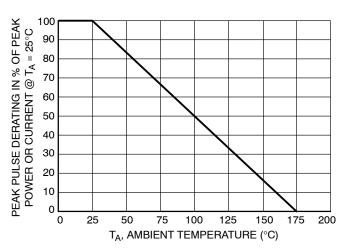


Figure 7. Pulse Derating Curve

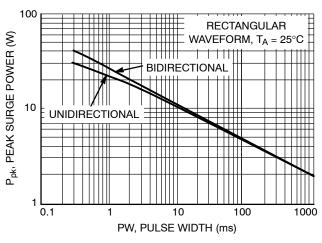


Figure 8. Maximum Non-repetitive Surge Power, P_{pk} versus PW

Power is defined as $V_{RSM} \, x \, I_Z(pk)$ where V_{RSM} is the clamping voltage at $I_Z(pk).$

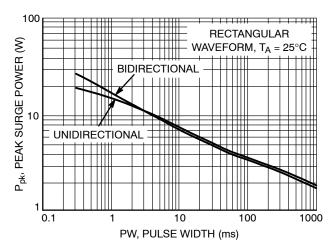
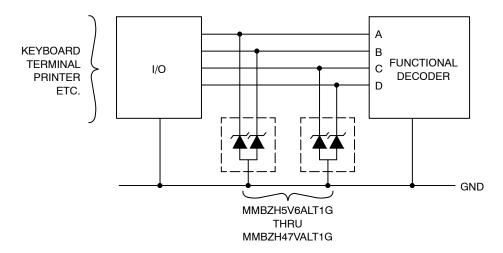
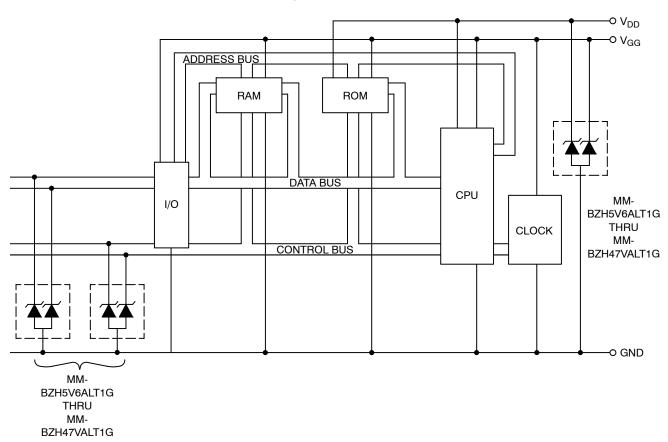


Figure 9. Maximum Non-repetitive Surge Power, Ppk (NOM) versus PW


Power is defined as $V_Z(NOM) \times I_Z(pk)$ where $V_Z(NOM)$ is the nominal Zener voltage measured at the low test current used for voltage classification.

TYPICAL COMMON ANODE APPLICATIONS


A dual junction common anode design in a SOT-23 package protects two separate lines using only one package. This adds flexibility and creativity to PCB design especially

when board space is at a premium. Two simplified examples of ESD applications are illustrated below.

Computer Interface Protection

Microprocessor Protection

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales