

Silicon Power Transistors

MJL21193 (PNP), **MJL21194 (NPN)**

The MJL21193 and MJL21194 utilize Perforated Emitter technology and are specifically designed for high power audio output, disk head positioners and linear applications.

Features

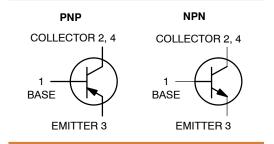
- Total Harmonic Distortion Characterized
- High DC Current Gain
- Excellent Gain Linearity
- High SOA
- These Devices are Pb-Free and are RoHS Compliant*

MAXIMUM RATINGS

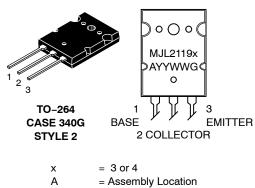
Rating	Symbol	Value	Unit
Collector-Emitter Voltage	V_{CEO}	250	Vdc
Collector-Base Voltage	V_{CBO}	400	Vdc
Emitter-Base Voltage	V_{EBO}	5	Vdc
Collector-Emitter Voltage - 1.5 V	V_{CEX}	400	Vdc
Collector Current - Continuous	Ic	16	Adc
Collector Current - Peak (Note 1)	I _{CM}	30	Adc
Base Current - Continuous	Ι _Β	5	Adc
Total Power Dissipation @ T _C = 25°C Derate above 25°C	P _D	200 1.43	W W/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Pulse Test: Pulse Width = 300 μs, Duty Cycle ≤2%


THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction-to-Case	$R_{\theta JC}$	0.7	°C/W


*For additional information on our Pb-Free strategy and soldering details, please download the onsemi Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

1

16 AMPERE COMPLEMENTARY SILICON POWER TRANSISTORS 250 VOLTS, 200 WATTS

MARKING DIAGRAM

= Year

WW = Work Week = Pb-Free Package

ORDERING INFORMATION

Device	Package	Shipping [†]
MJL21193G	TO-264 (Pb-Free)	25 Units / Rail
MJL21194G	TO-264 (Pb-Free)	25 Units / Rail

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS	•				
Collector–Emitter Sustaining Voltage ($I_C = 100$ mAdc, $I_B = 0$)	V _{CEO(sus)}	250	-	-	Vdc
Collector Cutoff Current (V _{CE} = 200 Vdc, I _B = 0)	I _{CEO}	-	-	100	μAdc
Emitter Cutoff Current (V _{CE} = 5 Vdc, I _C = 0)	I _{EBO}	-	-	100	μAdc
Collector Cutoff Current (V _{CE} = 250 Vdc, V _{BE(off)} = 1.5 Vdc)	I _{CEX}	-	_	100	μAdc
SECOND BREAKDOWN					
Second Breakdown Collector Current with Base Forward Biased (V _{CE} = 50 Vdc, t = 1 s (non-repetitive) (V _{CE} = 80 Vdc, t = 1 s (non-repetitive)	I _{S/b}	4.0 2.25	<u>-</u> -	_ _	Adc
ON CHARACTERISTICS			I		
DC Current Gain ($I_C = 8$ Adc, $V_{CE} = 5$ Vdc) ($I_C = 16$ Adc, $I_B = 5$ Adc)	h _{FE}	25 8	_ _	75 -	
Base-Emitter On Voltage (I _C = 8 Adc, V _{CE} = 5 Vdc)	V _{BE(on)}	-	_	2.2	Vdc
Collector–Emitter Saturation Voltage ($I_C = 8$ Adc, $I_B = 0.8$ Adc) ($I_C = 16$ Adc, $I_B = 3.2$ Adc)	V _{CE(sat)}	- -	- -	1.4 4	Vdc
DYNAMIC CHARACTERISTICS					
Total Harmonic Distortion at the Output V _{RMS} = 28.3 V, f = 1 kHz, P _{LOAD} = 100 W _{RMS}	h _{FE}		0.8		%
(Matched pair h _{FE} = 50 @ 5 A/5 V)	h _{FE} tched	_	0.08	_	
Current Gain Bandwidth Product ($I_C = 1$ Adc, $V_{CE} = 10$ Vdc, $f_{test} = 1$ MHz)	f _T	4	-	-	MHz
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, f _{test} = 1 MHz)	C _{ob}	-	-	500	pF

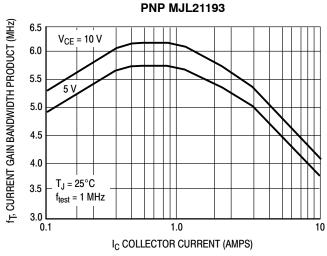


Figure 1. Typical Current Gain Bandwidth Product

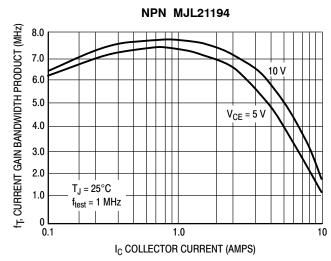


Figure 2. Typical Current Gain Bandwidth Product

TYPICAL CHARACTERISTICS

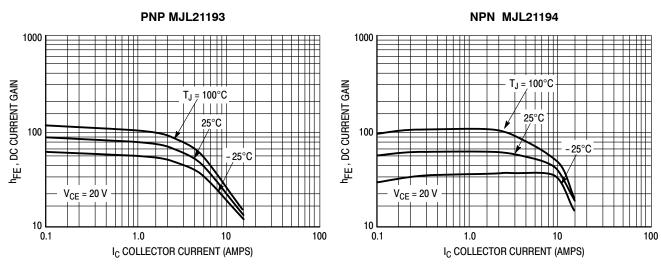


Figure 3. DC Current Gain, V_{CE} = 20 V

Figure 4. DC Current Gain, V_{CE} = 20 V

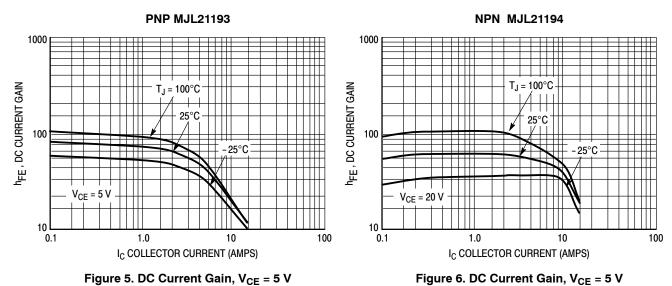


Figure 5. DC Current Gain, V_{CE} = 5 V

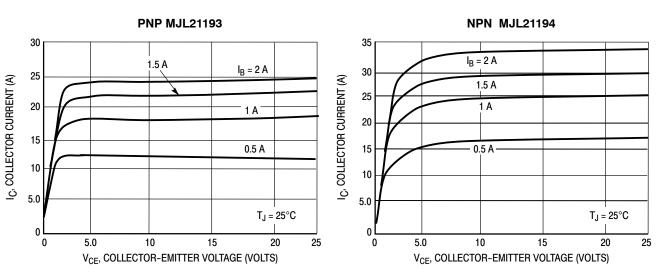


Figure 7. Typical Output Characteristics

Figure 8. Typical Output Characteristics

TYPICAL CHARACTERISTICS

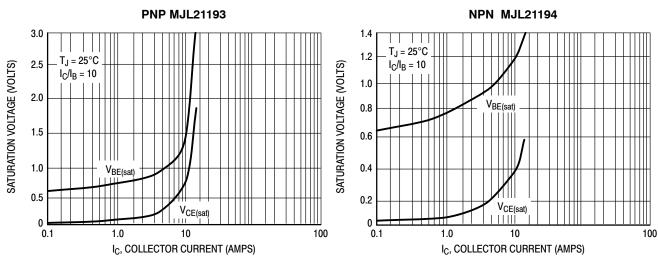


Figure 9. Typical Saturation Voltages

Figure 10. Typical Saturation Voltages

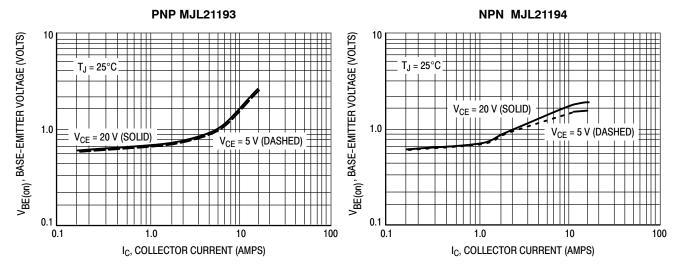


Figure 11. Typical Base-Emitter Voltage

Figure 12. Typical Base-Emitter Voltage

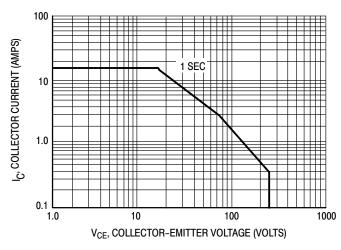


Figure 13. Active Region Safe Operating Area

There are two limitations on the power handling ability of a transistor; average junction temperature and secondary breakdown. Safe operating area curves indicate $I_C - V_{CE}$ limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate.

The data of Figure 13 is based on $T_{J(pk)} = 150^{\circ} C$; T_{C} is variable depending on conditions. At high case temperatures, thermal limitations will reduce the power than can be handled to values less than the limitations imposed by second breakdown.

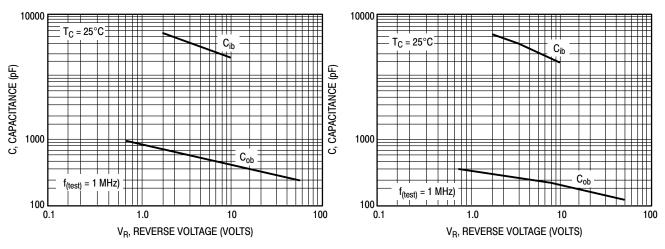


Figure 14. MJL21193 Typical Capacitance

Figure 15. MJL21194 Typical Capacitance

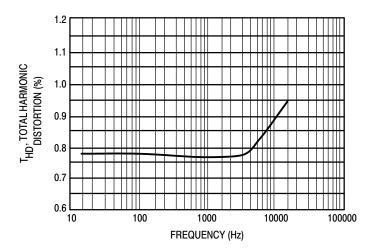


Figure 16. Typical Total Harmonic Distortion

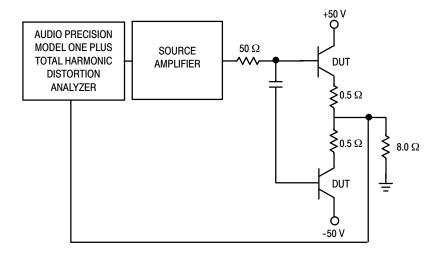
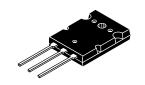
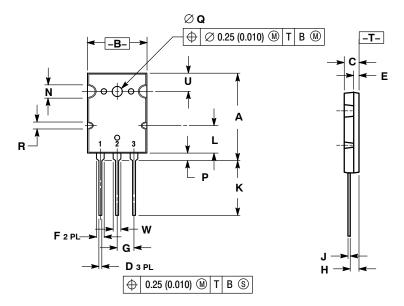



Figure 17. Total Harmonic Distortion Test Circuit



TO-3BPL (TO-264) CASE 340G-02 **ISSUE J**

DATE 17 DEC 2004

SCALE 1:2

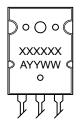
NOTES:

- 1. DIMENSIONING AND TOLERANCING PER
- ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: MILLIMETER.

	MILLIMETERS		INC	HES	
DIM	MIN	MAX	MIN	MAX	
Α	28.0	29.0	1.102	1.142	
В	19.3	20.3	0.760	0.800	
С	4.7	5.3	0.185	0.209	
D	0.93	1.48	0.037	0.058	
E	1.9	2.1	0.075	0.083	
F	2.2	2.4	0.087	0.102	
G	5.45	5.45 BSC		0.215 BSC	
Н	2.6	3.0	0.102	0.118	
J	0.43	0.78	0.017	0.031	
K	17.6	18.8	0.693	0.740	
L	11.2 REF		0.411	REF	
N	4.35 REF		0.172	REF	
P	2.2	2.6	0.087	0.102	
Q	3.1	3.5	0.122	0.137	
R	2.25 REF		0.089	REF	
U	6.3 REF		0.248	REF	
W	2.8	3.2	0.110	0.125	

GENERIC MARKING DIAGRAM*

STYLE 1	:
PIN 1.	GATE
2.	DRAIN
3.	SOURCE


STYLE 2: PIN 1. BASE 2. COLLECTOR

EMITTER

STYLE 3: PIN 1. GATE 2. SOURCE DRAIN

STYLE 4: PIN 1. DRAIN 2. SOURCE GATE 3.

STYLE 5: PIN 1. GATE 2. COLLECTOR EMITTER

XXXXXX = Specific Device Code

Α = Location Code

YY = Year WW = Work Week

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present.

DOCUMENT NUMBER:	98ASB42780B	Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	TO-3BPL (TO-264)		PAGE 1 OF 1

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves brisefin and of 160 m are trademarked to demonstrate the right to make changes without further notice to any products herein. **onsemi** makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales