Quad Bus Buffer ## with 3-State Control Inputs The MC74VHCT126A is a high speed CMOS quad bus buffer fabricated with silicon gate CMOS technology. It achieves noninverting high speed operation similar to equivalent Bipolar Schottky TTL while maintaining CMOS low power dissipation. The MC74VHCT126A requires the 3-state control input (OE) to be set Low to place the output into high impedance. The VHCT inputs are compatible with TTL levels. This device can be used as a level converter for interfacing 3.3 V to 5.0 V, because it has full 5.0 V CMOS level output swings. The VHCT126A input structures provide protection when voltages between 0 V and 5.5 V are applied, regardless of the supply voltage. The output structures also provide protection when $V_{CC}=0$ V. These input and output structures help prevent device destruction caused by supply voltage — input/output voltage mismatch, battery backup, hot insertion, etc. The internal circuit is composed of three stages, including a buffer output which provides high noise immunity and stable output. The inputs tolerate voltages up to 7.0 V, allowing the interface of 5.0 V systems to 3.0 V systems. #### **Features** - High Speed: $t_{PD} = 3.8 \text{ ns}$ (Typ) at $V_{CC} = 5.0 \text{ V}$ - Low Power Dissipation: $I_{CC} = 4.0 \mu A$ (Max) at $T_A = 25$ °C - TTL-Compatible Inputs: $V_{IL} = 0.8 \text{ V}$; $V_{IH} = 2.0 \text{ V}$ - Power Down Protection Provided on Inputs - Balanced Propagation Delays - Designed for 2.0 V to 5.5 V Operating Range - Low Noise: $V_{OLP} = 0.8 \text{ V (Max)}$ - Pin and Function Compatible with Other Standard Logic Families - Latchup Performance Exceeds 300 mA - ESD Performance: HBM > 2000 V; Machine Model > 200 V - Chip Complexity: 72 FETs or 18 Equivalent Gates - NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable - These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant ## ON Semiconductor® www.onsemi.com ## MARKING DIAGRAMS SOIC-14 D SUFFIX CASE 751A TSSOP-14 DT SUFFIX CASE 948G A = Assembly Location WL, L = Wafer Lot Y = Year WW, W = Work Week G or = Pb-Free Package (Note: Microdot may be in either location) See Applications Note #AND8004/D for date code and traceability information. #### **FUNCTION TABLE** | | VHCT126A | | | | | |-------------|-------------|-------------|--|--|--| | ı | nputs | Outputs | | | | | Α | OE | Y | | | | | H
L
X | H
H
L | H
L
Z | | | | #### ORDERING INFORMATION See detailed ordering and shipping information in the package dimensions section on page 4 of this data sheet. Figure 1. LOGIC DIAGRAM Active-High Output Enables Figure 2. PIN ASSIGNMENT ## **MAXIMUM RATINGS** | Rating | Symbol | Value | Unit | | |--|--|------------------|--|----| | DC Supply Voltage | | V _{CC} | - 0.5 to + 7.0 | ٧ | | DC Input Voltage | | V _{in} | - 0.5 to + 7.0 | ٧ | | DC Output Voltage | Output in 3–State
High or Low State | V _{out} | - 0.5 to + 7.0
- 0.5 to V _{CC} + 0.5 | ٧ | | Input Diode Current | I _{IK} | - 20 | mA | | | Output Diode Current (V _{OUT} < | lok | ± 20 | mA | | | DC Output Current, per Pin | l _{out} | ± 25 | mA | | | DC Supply Current, V _{CC} and C | I _{CC} | ± 75 | mA | | | Power Dissipation in Still Air, | SOIC Packages†
TSSOP Package† | P _D | 500
450 | mW | | Storage Temperature | | T _{stg} | - 65 to + 150 | °C | Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. †Derating — SOIC Packages: – 7 mW/°C from 65° to 125°C TSSOP Package: – 6.1 mW/°C from 65° to 125°C #### RECOMMENDED OPERATING CONDITIONS | Param | Symbol | Min | Max | Unit | | |--------------------------|---|---------------------------------|--------|------------------------|------| | DC Supply Voltage | | V _{CC} | 4.5 | 5.5 | V | | DC Input Voltage | | V _{in} | 0 | 5.5 | V | | DC Output Voltage | Output in 3–State
High or Low State | V _{out} | 0
0 | 5.5
V _{CC} | V | | Operating Temperature | | T _A | - 40 | + 85 | °C | | Input Rise and Fall Time | $V_{CC} = 5.0 \text{ V } \pm 0.5 \text{ V}$ | t _r , t _f | 0 | 20 | ns/V | Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability. This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high–impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range GND \leq (V_{in} or V_{out}) \leq V_{CC} . Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or V_{CC}). Unused outputs must be left open. ### DC ELECTRICAL CHARACTERISTICS | | | | v _{cc} | T, | ₄ = 25° | С | T _A ≤ | 85°C | T _A ≤ ' | 125°C | | |---|--|------------------|-------------------|-------------------|--------------------|--------------------|-------------------|--------------------|---------------------------|--------------------|------| | Parameter | Test Conditions | Symbol | (V) | Min | Тур | Max | Min | Max | Min | Max | Unit | | Minimum High-Level Input
Voltage | | V _{IH} | 3.0
4.5
5.5 | 1.2
2.0
2.0 | | | 1.2
2.0
2.0 | | 1.2
2.0
2.0 | | V | | Maximum Low–Level Input
Voltage | | V _{IL} | 3.0
4.5
5.5 | | | 0.53
0.8
0.8 | | 0.53
0.8
0.8 | | 0.53
0.8
0.8 | V | | Minimum High–Level Output
Voltage | $V_{IN} = V_{IH} \text{ or } V_{IL}$
$I_{OH} = -50 \mu A$ | V _{OH} | 3.0
4.5 | 2.9
4.4 | 3.0
4.5 | | 2.9
4.4 | | 2.9
4.4 | | V | | $V_{IN} = V_{IH} \text{ or } V_{IL}$ | $\begin{aligned} &V_{\text{IN}} = V_{\text{IH}} \text{ or } V_{\text{IL}} \\ &I_{\text{OH}} = -4.0 \text{ mA} \\ &I_{\text{OH}} = -8.0 \text{ mA} \end{aligned}$ | | 3.0
4.5 | 2.58
3.94 | | | 2.48
3.80 | | 2.34
3.66 | | | | Maximum Low-Level Output Voltage VIN = VIH or VII | $V_{IN} = V_{IH} \text{ or } V_{IL}$
$I_{OL} = 50 \mu\text{A}$ | V _{OL} | 3.0
4.5 | | 0.0
0.0 | 0.1
0.1 | | 0.1
0.1 | | 0.1
0.1 | V | | VIN = VIH OI VIL | $\begin{aligned} &V_{\text{IN}} = V_{\text{IH}} \text{ or } V_{\text{IL}} \\ &I_{\text{OL}} = 4.0 \text{ mA} \\ &I_{\text{OL}} = 8.0 \text{ mA} \end{aligned}$ | | 3.0
4.5 | | | 0.36
0.36 | | 0.44
0.44 | | 0.52
0.52 | | | Maximum Input Leakage Current | V _{IN} = 5.5 V or GND | I _{IN} | 0 to 5.5 | | | ± 0.1 | | ± 1.0 | | ± 1.0 | μΑ | | Maximum Quiescent Supply
Current | $V_{IN} = V_{CC}$ or GND | I _{CC} | 5.5 | | | 2.0 | | 20 | | 40 | μА | | Quiescent Supply Current | Input: V _{IN} = 3.4 V | I _{CCT} | 5.5 | | | 1.35 | | 1.50 | | 1.65 | mA | | Maximum 3–State Leakage
Current | $V_{IN} = V_{IH} \text{ or } V_{I}$
$V_{OUT} = V_{CC} \text{ or GND}$ | l _{OZ} | 5.5 | | | ±0.2
5 | | ±2.5 | | ±2.5 | μΑ | | Output Leakage Current | V _{OUT} = 5.5 V | I _{OPD} | 0.0 | | | 0.5 | | 5.0 | | 10 | μΑ | ## AC ELECTRICAL CHARACTERISTICS (Input $t_r = t_f = 3.0 \text{ ns}$) | | | | T, | _A = 25° | С | T _A = 5 | ≤ 85°C | T _A ≤ ' | 125°C | | |---|---|--|-----|--------------------|-------------|--------------------|---------------------|---------------------------|--------------|------| | Parameter | Test Conditions | Symbol | Min | Тур | Max | Min | Max | Min | Max | Unit | | Maximum Propagation Delay,
A to Y | $V_{CC} = 3.3 \pm 0.3 \text{ V}$ $C_L = 15 \text{ pF}$ $C_L = 50 \text{ pF}$ | t _{PLH} ,
t _{PHL} | | 5.6
8.1 | 8.0
11.5 | 1.0
1.0 | 9.5
13.0 | | 12.0
16.0 | ns | | | $V_{CC} = 5.0 \pm 0.5 \text{ V}$ $C_L = 15 \text{ pF}$ $C_L = 50 \text{ pF}$ | | | 3.8
5.3 | 5.5
7.5 | 1.0
1.0 | 6.5
8.5 | | 8.5
10.5 | | | Maximum Output Enable TIme, OE to Y | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | t _{PZL} ,
t _{PZH} | | 5.4
7.9 | 8.0
11.5 | 1.0
1.0 | 9.5
13.0 | | 11.5
15.0 | ns | | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | 3.6
5.1 | 5.1
7.1 | 1.0
1.0 | 6.0
8.0 | | 7.5
9.5 | | | Maximum Output
Disable Time, OE to Y | $\begin{array}{c} V_{CC} = 3.3 \pm 0.3 \ V C_L = 50 \ pF \\ R_L = 1.0 \ k\Omega \end{array}$ | t _{PLZ} ,
t _{PHZ} | | 9.5 | 13.2 | 1.0 | 15.0 | | 18.0 | ns | | | $V_{CC} = 5.0 \pm 0.5 \text{ V}$ $C_L = 50 \text{ pF}$ $R_L = 1.0 \text{ k}\Omega$ | | | 6.1 | 8.8 | 1.0 | 10.0 | | 12.0 | | | Output-to-Output Skew | $V_{CC} = 3.3 \pm 0.3 \text{ V}$ $C_L = 50 \text{ pF}$ (Note 1) | t _{OSLH} ,
t _{OSHL} | | | 1.5 | | 1.5 | | 2.0 | ns | | | $V_{CC} = 5.0 \pm 0.5 \text{ V}$ $C_L = 50 \text{ pF}$ (Note 1) | | | | 1.0 | | 1.0 | | 1.5 | | | Maximum Input Capacitance | | C _{in} | | 4 | 10 | | 10 | | 10 | pF | | Maximum Three–State Output
Capacitance (Output in High
Impedance State) | | C _{out} | | 6 | | | | | | pF | | | • | | | Ту | pical @ | 25°C, | V _{CC} = 5 | .0V | • | | | Power Dissipation Capacitance (N | Note 2) | C _{PD} | | | | 15 | | | | pF | Parameter guaranteed by design. t_{OSLH} = |t_{PLHm} - t_{PLHn}|, t_{OSHL} = |t_{PHLm} - t_{PHLn}|. C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: I_{CC(OPR)} = C_{PD} • V_{CC} • f_{in} + I_{CC}/4 (per buffer). C_{PD} is used to determine the no–load dynamic power consumption; P_D = C_{PD} • V_{CC}² • f_{in} + I_{CC} • V_{CC}. ## **NOISE CHARACTERISTICS** (Input $t_r = t_f = 3.0$ ns, $C_L = 50$ pF, $V_{CC} = 5.0$ V) | | | T _A = 25°C | | | |--|------------------|-----------------------|-------|------| | Characteristic | Symbol | Тур | Max | Unit | | Quiet Output Maximum Dynamic V _{OL} | V _{OLP} | 0.3 | 0.8 | V | | Quiet Output Minimum Dynamic V _{OL} | V _{OLV} | - 0.3 | - 0.8 | V | | Minimum High Level Dynamic Input Voltage | V _{IHD} | | 3.5 | V | | Maximum Low Level Dynamic Input Voltage | V _{ILD} | | 1.5 | V | ### **SWITCHING WAVEFORMS** Figure 3. Figure 4. *Includes all probe and jig capacitance Figure 5. Test Circuit DEVICE UNDER TEST C_L^* TEST POINT OUTPUT $1 \text{ k}\Omega$ OUTPUT $1 \text{ k}\Omega$ C_L^* CONNECT TO V_{CC} WHEN TESTING t_{PLZ} AND t_{PZL} . CONNECT TO GND WHEN TESTING t_{PHZ} AND t_{PZH} . *Includes all probe and jig capacitance Figure 6. Test Circuit ## **ORDERING INFORMATION** | Device | Package | Shipping [†] | |-------------------|-----------------------|-----------------------| | MC74VHCT126ADR2G | SOIC-14
(Pb-Free) | 2500 / Tape & Reel | | M74VHCT126ADTR2G | TSSOP-14
(Pb-Free) | 2500 / Tape & Reel | | NLVVHCT126ADTR2G* | TSSOP-14
(Pb-Free) | 2500 / Tape & Reel | [†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. ^{*}NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable. onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase #### ADDITIONAL INFORMATION **TECHNICAL PUBLICATIONS:** $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$ onsemi Website: www.onsemi.com ONLINE SUPPORT: www.onsemi.com/support For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales