ON Semiconductor ## Is Now To learn more about onsemi™, please visit our website at www.onsemi.com onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, # **Dual Non-Inverting Schmitt Trigger Buffer** ## MC74VHC2G17, MC74VHC2GT17 The MC74VHC2G17/MC74VHC2GT17 is a high performance dual buffer with Schmitt–Trigger inputs operating from a 2.0 to 5.5 V supply. The MC74VHC2G17 has CMOS–level input thresholds while the MC74VHC2GT17 has TTL–level input thresholds. #### **Features** - Designed for 2.0 V to 5.5 V V_{CC} Operation - 4.0 ns t_{PD} at $V_{CC} = 5 \text{ V (Typ)}$ - Inputs/Outputs Overvoltage Tolerant up to 5.5 V - I_{OFF} Supports Partial Power Down Protection - Sink 8 mA at 4.5 V - Available in SC-88, SC-74, and UDFN6 Packages - Chip Complexity < 100 FETs - These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant Figure 1. Logic Symbol #### ON Semiconductor® www.onsemi.com 1 UDFN6 1x1, 0.35P CASE 517BX X, XXX = Specific Device Code M = Date Code* = Pb-Free Package (Note: Microdot may be in either location) *Date Code orientation and/or position may vary depending upon manufacturing location. #### **ORDERING INFORMATION** See detailed ordering and shipping information in the package dimensions section on page 7 of this data sheet. Figure 2. Pinout (Top View) ## **PIN ASSIGNMENT** | Pin | Function | |-----|-----------------| | 1 | A1 | | 2 | GND | | 3 | A2 | | 4 | Y2 | | 5 | V _{CC} | | 6 | Y1 | ## **FUNCTION TABLE** | A Input | Y Output | |---------|----------| | L | L | | Н | Н | #### **MAXIMUM RATINGS** | Symbol | Characteristic | s | Value | Units | |-------------------------------------|---|---|--|-------| | V _{CC} | DC Supply Voltage | | -0.5 to +6.5 | V | | V _{IN} | DC Input Voltage | | -0.5 to +6.5 | V | | V _{OUT} | DC Output Voltage
SC-88, SC-74, UDFN6 | Active-Mode (High or Low State) Tri-State Mode (Note 1) Power-Down Mode (V _{CC} = 0 V) | -0.5 to V _{CC} +0.5
-0.5 to +6.5
-0.5 to +6.5 | V | | I _{IK} | DC Input Diode Current, V _{IN} < GND | | -20 | mA | | lok | DC Output Diode Current, V _{OUT} < GND | | -20 | mA | | I _{OUT} | DC Output Source/Sink Current | | ±25 | mA | | I _{CC} or I _{GND} | DC Supply Current per Supply Pin or Ground Pin | | ±50 | mA | | T _{STG} | Storage Temperature Range | | -65 to +150 | °C | | TL | Lead Temperature, 1 mm from Case for 10 secs | | 260 | °C | | TJ | Junction Temperature under Bias | | +150 | °C | | θ_{JA} | Thermal Resistance (Note 2) | SC-88
SC-74
UDFN6 | 377
320
154 | °C/W | | P _D | Power Dissipation in Still Air | SC-88
SC-74
UDFN6 | 332
390
812 | mW | | MSL | Moisture Sensitivity | | Level 1 | - | | F _R | Flamebility Rating | Oxygen Index: 28 to 34 | UL 94-V-0 @ 0.125 in | - | | V _{ESD} | ESD Withstand Voltage (Note 3) | Human Body Model
Charged Device Model | 2000
1000 | V | | I _{LATCHUP} | Latchup Performance (Note 4) | | ±100 | mA | Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. - Applicable to devices with outputs that may be tri-stated. - 2. Measured with minimum pad spacing on an FR4 board, using 10 mm-by-1 inch, 2 ounce copper trace no air flow per JESD51-7. 3. HBM tested to ANSI/ESDA/JEDEC JS-001-2017. CDM tested to EIA/JESD22-C101-F. JEDEC recommends that ESD qualification to EIA/JESD22-A115-A (Machine Model) be discontinued per JEDEC/JEP172A. - 4. Tested to EIA/JESD78 Class II. ## **RECOMMENDED OPERATING CONDITIONS** | Symbol | Para | meter | Min | Max | Unit | |---------------------------------|------------------------------------|--|------------------|--|------| | V _{CC} | Positive DC Supply Voltage | | 2.0 | 5.5 | V | | V _{IN} | DC Input Voltage | | 0 | 5.5 | V | | V _{OUT} | DC Output Voltage | Active–Mode (High or Low State) Tri–State Mode (Note 1) Power–Down Mode ($V_{\rm CC}$ = 0 V) | 0
0
0 | V _{CC}
5.5
5.5 | ٧ | | T _A | Operating Temperature Range | | -55 | +125 | °C | | t _r , t _f | Input Transition Rise or Fall Rate | $V_{CC} = 2.0 \text{ V} \\ V_{CC} = 2.3 \text{ V to } 2.7 \text{ V} \\ V_{CC} = 3.0 \text{ V to } 3.6 \text{ V} \\ V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$ | 0
0
0
0 | No Limit
No Limit
No Limit
No Limit | ns | Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability. ## DC ELECTRICAL CHARACTERISTICS (MC74VHC2G17) | | | Test | v _{cc} | 1 | Γ _A = 25° | С | -40°C ≤ 7 | Γ _A ≤ 85°C | -55°C ≤ T | A ≤ 125°C | | |------------------|-------------------------------|---|---------------------------------|-----------------------------------|-----------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|------| | Symbol | Parameter | Conditions | (V) | Min | Тур | Max | Min | Max | Min | Max | Unit | | V _{T+} | Positive Threshold
Voltage | | 3.0
4.5
5.5 | -
-
- | 2.0
3.0
3.6 | 2.20
3.15
3.85 | -
-
- | 2.20
3.15
3.85 | -
-
- | 2.20
3.15
3.85 | ٧ | | V _{T-} | Negative Threshold
Voltage | | 3.0
4.5
5.5 | 0.9
1.35
1.65 | 1.5
2.3
2.9 | -
-
- | 0.9
1.35
1.65 | -
-
- | 0.9
1.35
1.65 | -
-
- | ٧ | | V _H | Hysteresis Voltage | | 3.0
4.5
5.5 | 0.30
0.40
0.50 | 0.57
0.67
0.74 | 1.20
1.40
1.60 | 0.30
0.40
0.50 | 1.20
1.40
1.60 | 0.30
0.40
0.50 | 1.20
1.40
1.60 | ٧ | | V _{OH} | High-Level Output
Voltage | $\begin{aligned} &V_{IN} = V_{IH} \text{ or } V_{IL} \\ &I_{OH} = -50 \mu\text{A} \\ &I_{OH} = -50 \mu\text{A} \\ &I_{OH} = -50 \mu\text{A} \\ &I_{OH} = -4 m\text{A} \\ &I_{OH} = -8 m\text{A} \end{aligned}$ | 2.0
3.0
4.5
3.0
4.5 | 1.9
2.9
4.4
2.58
3.94 | 2.0
3.0
4.5
– | -
-
-
- | 1.9
2.9
4.4
2.48
3.80 | -
-
-
- | 1.9
2.9
4.4
2.34
3.66 | -
-
-
- | V | | V _{OL} | Low-Level Output
Voltage | $\begin{aligned} &V_{IN} = V_{IH} \text{ or } V_{IL} \\ &I_{OL} = 50 \mu\text{A} \\ &I_{OL} = 50 \mu\text{A} \\ &I_{OL} = 50 \mu\text{A} \\ &I_{OL} = 4 \text{ mA} \\ &I_{OL} = 8 \text{ mA} \end{aligned}$ | 2.0
3.0
4.5
3.0
4.5 | -
-
-
- | 0.0
0.0
0.0
-
- | 0.1
0.1
0.1
0.36
0.36 | -
-
-
- | 0.1
0.1
0.1
0.44
0.44 | -
-
-
- | 0.1
0.1
0.1
0.52
0.52 | V | | I _{IN} | Input Leakage
Current | V _{IN} = 5.5 V or
GND | 2.0
to 5.5 | - | _ | ±0.1 | - | ±1.0 | - | ±1.0 | μΑ | | I _{OFF} | Power Off Leakage
Current | V _{IN} = 5.5 V or
V _{OUT} = 5.5 V | 0 | _ | _ | 1.0 | | 10 | - | 10 | μΑ | | I _{CC} | Quiescent Supply
Current | V _{IN} = V _{CC} or
GND | 5.5 | _ | _ | 1.0 | - | 20 | - | 40 | μΑ | ## DC ELECTRICAL CHARACTERISTICS (MC74VHC2GT17) | | | Test | v _{cc} | 7 | T _A = 25° | С | -40°C ≤ 7 | Γ _A ≤ 85°C | -55°C ≤ T | A ≤ 125°C | | |------------------|--|---|---------------------------------|-----------------------------------|-----------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|------| | Symbol | Parameter | Conditions | (V) | Min | Тур | Max | Min | Max | Min | Max | Unit | | V _{T+} | Positive Threshold
Voltage | | 3.0
4.5
5.5 | -
-
- | 1.40
1.74
1.94 | 1.60
2.00
2.10 | | 1.6
2.0
2.1 | -
-
- | 1.6
2.0
2.1 | V | | V _{T-} | Negative Threshold
Voltage | | 3.0
4.5
5.5 | 0.35
0.5
0.6 | 0.76
1.01
1.13 | -
-
- | 0.35
0.5
0.6 | -
-
- | 0.35
0.5
0.6 | -
-
- | V | | V _H | Hysteresis Voltage | | 3.0
4.5
5.5 | 0.30
0.40
0.50 | 0.64
0.73
0.81 | 1.20
1.40
1.60 | 0.30
0.40
0.50 | 1.20
1.40
1.60 | 0.30
0.40
0.50 | 1.20
1.40
1.60 | V | | V _{OH} | High-Level Output
Voltage | $\begin{aligned} &V_{IN} = V_{IH} \text{ or } V_{IL} \\ &I_{OH} = -50 \mu\text{A} \\ &I_{OH} = -50 \mu\text{A} \\ &I_{OH} = -50 \mu\text{A} \\ &I_{OH} = -4 m\text{A} \\ &I_{OH} = -8 m\text{A} \end{aligned}$ | 2.0
3.0
4.5
3.0
4.5 | 1.9
2.9
4.4
2.58
3.94 | 2.0
3.0
4.5
– | -
-
-
- | 1.9
2.9
4.4
2.48
3.80 | -
-
-
- | 1.9
2.9
4.4
2.34
3.66 | -
-
-
- | ٧ | | V _{OL} | Low-Level Output
Voltage | $\begin{array}{c} V_{IN} = V_{IH} \text{ or } V_{IL} \\ I_{OL} = 50 \mu\text{A} \\ I_{OL} = 50 \mu\text{A} \\ I_{OL} = 50 \mu\text{A} \\ I_{OL} = 4 \text{ mA} \\ I_{OL} = 8 \text{ mA} \end{array}$ | 2.0
3.0
4.5
3.0
4.5 | -
-
-
- | 0.0
0.0
0.0
-
- | 0.1
0.1
0.1
0.36
0.36 | -
-
-
- | 0.1
0.1
0.1
0.44
0.44 | -
-
-
-
- | 0.1
0.1
0.1
0.52
0.52 | ٧ | | I _{IN} | Input Leakage
Current | V _{IN} = 5.5 V or
GND | 2.0
to 5.5 | _ | _ | ±0.1 | - | ±1.0 | - | ±1.0 | μΑ | | I _{OFF} | Power Off Leakage
Current | V _{IN} = 5.5 V or
V _{OUT} = 5.5 V | 0 | - | _ | 1.0 | - | 10 | - | 10 | μА | | I _{CC} | Quiescent Supply
Current | V _{IN} = V _{CC} or
GND | 5.5 | - | _ | 1.0 | - | 20 | - | 40 | μΑ | | Ісст | Increase in Quies-
cent Supply Current
per Input Pin | One Input: V _{IN}
= 3.4 V; Other
Input at V _{CC} or
GND | 5.5 | - | - | 1.35 | - | 1.5 | - | 1.65 | mA | #### **AC ELECTRICAL CHARACTERISTICS** | | | | | Т | A = 25° | C | -40°C ≤ 1 | Γ _A ≤ 85°C | -55°C ≤ T | A ≤ 125°C | | |--------------------|-----------------------------|---|---------------------|-----|---------|------|-----------|-----------------------|-----------|-----------|------| | Symbol | Parameter | Conditions | V _{CC} (V) | Min | Тур | Max | Min | Max | Min | Max | Unit | | t _{PLH} , | Propagation Delay, | C _L = 15 pF | 3.0 to 3.6 | - | 7.0 | 12.8 | - | 15.0 | _ | 17.0 | ns | | t _{PHL} | A to Y
(Figures 3 and 4) | C _L = 50 pF | | _ | 8.5 | 16.3 | - | 18.5 | - | 20.5 | | | | , | C _L = 15 pF | 4.5 to 5.5 | _ | 4.0 | 8.6 | - | 10.0 | - | 11.5 | | | | | C _L = 50 pF | | - | 5.5 | 10.6 | - | 12.0 | - | 13.5 | | | C _{IN} | Input Capacitance | | | _ | 4.0 | 10 | - | 10 | - | 10 | pF | | C _{OUT} | Output Capacitance | Output in
High
Impedance
State | | - | 6.0 | - | - | - | - | - | pF | | | | Typical @ 25°C, V _{CC} = 5.0 V | | |----------|--|---|----| | C_{PD} | Power Dissipation Capacitance (Note 5) | 8.0 | pF | ^{5.} C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: I_{CC(OPR)} = C_{PD} • V_{CC} • f_{in} + I_{CC}. C_{PD} is used to determine the no–load dynamic power consumption; P_D = C_{PD} • V_{CC}² • f_{in} + I_{CC} • V_{CC}. | Test | Switch
Position | C _L , pF | R_L, Ω | |-------------------------------------|--------------------|------------------------------|---------------| | t _{PLH} / t _{PHL} | Open | See AC Characteristics Table | Х | | t _{PLZ} / t _{PZL} | V _{CC} | | 1 k | | t _{PHZ} / t _{PZH} | GND | | 1 k | X = Don't Care C_L includes probe and jig capacitance R_T is Z_{OUT} of pulse generator (typically 50 $\Omega)$ f = 1 MHz Figure 3. Test Circuit Figure 4. Switching Waveforms | | | V _m | | | |---------------------|---------------------|-------------------------------------|---|--------------------| | V _{CC} , V | V _{mi} , V | t _{PLH} , t _{PHL} | t_{PZL} , t_{PLZ} , t_{PZH} , t_{PHZ} | V _Y , V | | 3.0 to 3.6 | V _{CC} / 2 | V _{CC} / 2 | V _{CC} / 2 | 0.3 | | 4.5 to 5.5 | V _{CC} /2 | V _{CC} / 2 | V _{CC} / 2 | 0.3 | #### **ORDERING INFORMATION** | Device | Package | Specific Device Code | Pin1 Orientation
(See bellow) | Shipping [†] | |--|-------------------------|----------------------|----------------------------------|-----------------------| | MC74VHC2G17DFT2G
(In Development) | SC-88 | TBD | Q4 | 3000 / Tape & Reel | | MC74VHC2G17DBVT1G
(In Development) | SC-74 | TBD | Q4 | 3000 / Tape & Reel | | MC74VHC2G17MU2TCG
(In Development) | UDFN6, 1.2 x 1.0, 0.4P | Α | Q4 | 3000 / Tape & Reel | | MC74VHC2G17MU1TCG
(In Development) | UDFN6, 1.45 x 1.0, 0.5P | R (Rotated 90° CW) | Q4 | 3000 / Tape & Reel | | MC74VHC2G17MU3TCG
(In Development) | UDFN6, 1.0 x 1.0, 0.35P | 5 (Rotated 90° CW) | Q4 | 3000 / Tape & Reel | | MC74VHC2GT17DFT2G
(In Development) | SC-88 | TBD | Q4 | 3000 / Tape & Reel | | MC74VHC2GT17DBVT1G
(In Development) | SC-74 | TBD | Q4 | 3000 / Tape & Reel | | MC74VHC2GT17MU1TCG
(In Development) | UDFN6, 1.45 x 1.0, 0.5P | TBD | Q4 | 3000 / Tape & Reel | | MC74VHC2GT17MU3TCG
(In Development) | UDFN6, 1.0 x 1.0, 0.35P | TBD | Q4 | 3000 / Tape & Reel | [†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. ## Pin 1 Orientation in Tape and Reel ## **Direction of Feed** #### PACKAGE DIMENSIONS #### SC-88/SC70-6/SOT-363 CASE 419B-02 #### NOTES: - 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS. - DIMENSIONS D AND E1 DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. MOLD FLASH, PROTRU- - PROTRUSIONS, OR GATE BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.20 PER END. DIMENSIONS D AND E1 AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY AND DATUM H. DATUMS A AND B ARE DETERMINED AT DATUM H. DIMENSIONS b AND c APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN 0.08 AND 0.15 FROM THE TIP. DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 TOTAL IN EXCESS OF DIMENSION b AT MAXIMUM MATERIAL CONDITION. THE DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OF THE FOOT. | $\overline{}$ | | | | | | | | |---------------|------|---------|------|-----------|----------|-------|--| | | MIL | LIMETE | ERS | | INCHES | 3 | | | DIM | MIN | NOM | MAX | MIN | NOM | MAX | | | Α | | | 1.10 | | | 0.043 | | | A1 | 0.00 | | 0.10 | 0.000 | | 0.004 | | | A2 | 0.70 | 0.90 | 1.00 | 0.027 | 0.035 | 0.039 | | | b | 0.15 | 0.20 | 0.25 | 0.006 | 0.008 | 0.010 | | | С | 0.08 | 0.15 | 0.22 | 0.003 | 0.006 | 0.009 | | | D | 1.80 | 2.00 | 2.20 | 0.070 | 0.078 | 0.086 | | | Е | 2.00 | 2.10 | 2.20 | 0.078 | 0.082 | 0.086 | | | E1 | 1.15 | 1.25 | 1.35 | 0.045 | 0.049 | 0.053 | | | е | | 0.65 BS | С | 0.026 BSC | | | | | L | 0.26 | 0.36 | 0.46 | 0.010 | 0.014 | 0.018 | | | L2 | | 0.15 BS | C | (| 0.006 BS | SC | | | aaa | 0.15 | | | 0.006 | | | | | bbb | 0.30 | | | | 0.012 | | | | ccc | | 0.10 | | | 0.004 | | | | ddd | | 0.10 | | | 0.004 | | | #### **RECOMMENDED SOLDERING FOOTPRINT*** *For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. #### **PACKAGE DIMENSIONS** #### SC-74 CASE 318F-05 ISSUE N - NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL. 4. 318F-01, -02, -03, -04 OBSOLETE. NEW STANDARD 318F-05. | | MILLIMETERS | | | INCHES | | | |-----|-------------|------|-------|--------|-------|---------| | DIM | MIN | NOM | MAX | MIN | NOM | MAX | | Α | 0.90 | 1.00 | 1.10 | 0.035 | 0.039 | 0.043 | | A1 | 0.01 | 0.06 | 0.10 | 0.001 | 0.002 | 0.004 | | b | 0.25 | 0.37 | 0.50 | 0.010 | 0.015 | 0.020 | | С | 0.10 | 0.18 | 0.26 | 0.004 | 0.007 | 0.010 | | D | 2.90 | 3.00 | 3.10 | 0.114 | 0.118 | 0.122 | | E | 1.30 | 1.50 | 1.70 | 0.051 | 0.059 | 0.067 | | е | 0.985 | 0.95 | 11.05 | 0.084 | 0.037 | 0.10241 | | L | 0.20 | 0.40 | 0.60 | 0.008 | 0.016 | 0.024 | | HE | 2.50 | 2.75 | 3.00 | 0.099 | 0.108 | 0.118 | | θ | | - | | | - | | ## **SOLDERING FOOTPRINT*** ^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. #### **PACKAGE DIMENSIONS** UDFN6, 1.45x1.0, 0.5P CASE 517AQ ISSUE O - NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS. 3. DIMENSION & APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.30 mm FROM THE TERMINAL TIP. | | MILLIMETERS | | | | | |-----|-------------|------|--|--|--| | DIM | MIN | MAX | | | | | Α | 0.45 | 0.55 | | | | | A1 | 0.00 | 0.05 | | | | | A2 | 0.07 REF | | | | | | b | 0.20 | 0.30 | | | | | D | 1.45 BSC | | | | | | Е | 1.00 BSC | | | | | | е | 0.50 BSC | | | | | | L | 0.30 | 0.40 | | | | | L1 | | 0.15 | | | | #### **MOUNTING FOOTPRINT** DIMENSIONS: MILLIMETERS ^{*}For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. #### **PACKAGE DIMENSIONS** ^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. #### PACKAGE DIMENSIONS UDFN6, 1x1, 0.35P CASE 517BX **ISSUE O** #### NOTES: - DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. - ASME 114.50M, 1994. CONTROLLING DIMENSION: MILLIMETERS. DIMENSION 6 APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.20 MM FROM TERMINAL TIP. - PACKAGE DIMENSIONS EXCLUSIVE OF BURRS AND MOLD FLASH. | | MILLIMETERS | | | | | |-----|-------------|------|--|--|--| | DIM | MIN | MAX | | | | | Α | 0.45 | 0.55 | | | | | A1 | 0.00 | 0.05 | | | | | А3 | 0.13 REF | | | | | | b | 0.12 | 0.22 | | | | | D | 1.00 BSC | | | | | | E | 1.00 BSC | | | | | | е | 0.35 BSC | | | | | | L | 0.25 | 0.35 | | | | | L1 | 0.30 | 0.40 | | | | #### RECOMMENDED **SOLDERING FOOTPRINT*** *For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. ON Semiconductor and IN are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability. arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. #### PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com ON Semiconductor Website: www.onsemi.com TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative