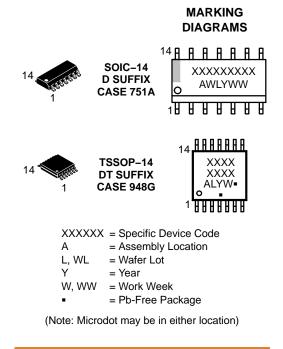
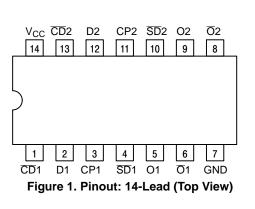
Low-Voltage CMOS Dual D-Type Flip-Flop

With 5 V-Tolerant Inputs


MC74LCX74

The MC74LCX74 is a high performance, dual D-type flip-flop with asynchronous clear and set inputs and complementary (O, \overline{O}) outputs. It operates from a 1.65 to 5.5 V supply. High impedance TTL compatible inputs significantly reduce current loading to input drivers while TTL compatible outputs offer improved switching noise performance. A V_I specification of 5.5 V allows MC74LCX74 inputs to be safely driven from 5.0 V devices.

The MC74LCX74 consists of 2 edge-triggered flip-flops with individual D-type inputs. The flip-flop will store the state of individual D inputs, that meet the setup and hold time requirements, on the LOW-to-HIGH Clock (CP) transition.


Features

- Designed for 1.65 V to 5.5 V V_{CC} Operation
- 5.0 V Tolerant Inputs Interface Capability With 5.0 V TTL Logic
- LVTTL Compatible
- LVCMOS Compatible
- 24 mA Balanced Output Sink and Source Capability at $V_{CC} = 3.0 V$
- Near Zero Static Supply Current in All Three Logic States (10 μA) Substantially Reduces System Power Requirements
- Latchup Performance Exceeds 100 mA
- ESD Performance: Human Body Model >2000 V
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 8 of this data sheet.

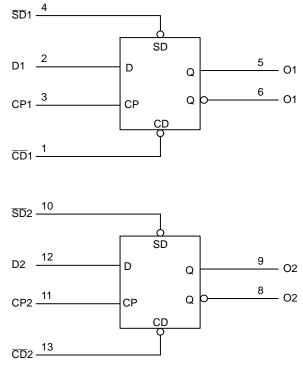


Figure 2. Logic Diagram

PIN NAMES

Pins	Function
CP1, CP2	Clock Pulse Inputs
D1-D2	Data Inputs
<u>CD</u> 1, <u>CD</u> 2	Direct Clear Inputs
<u>SD</u> 1, <u>SD</u> 2	Direct Set Inputs
On- O n	Outputs

TRUTH TABLE

	Inp	uts		Outputs		
SDn	CDn	CPn	Dn	On	Ōn	Operating Mode
L	Н	Х	Х	Н	L	Asynchronous Set
н	L	х	х	L	н	Asynchronous Clear
L	L	х	Х	Н	н	Undetermined
Н	Н	Ŷ	h	Н	L	
н	н	\uparrow	I	L	н	Load and Read Register
Н	Н	¢	Х	NC	NC	Hold

н = High Voltage Level

= High Voltage Level One Setup Time Prior to the Low-to-High Clock Transition h

= Low Voltage Level L

= Low Voltage Level One Setup Time Prior to the Low-to-High Clock Transition 1

NC = No Change

= High or Low Voltage Level and Transitions are Acceptable X ↑

= Low-to-High Transition

≄ = Not a Low-to-High Transition

For I_{CC} reasons, DO NOT FLOAT Inputs

MAXIMUM RATINGS

Symbol	Parameter DC Supply Voltage DC Input Voltage (Note 1)		Value	Unit
V _{CC}			-0.5 to +6.5	V
VI			-0.5 to +6.5	V
Vo	DC Output Voltage (Note 1)	Active-Mode (High or Low State)	–0.5 to V _{CC} + 0.5	V
		Tri-State Mode	-0.5 to +6.5	
		Power-Down Mode ($V_{CC} = 0 V$)	-0.5 to +6.5	
Ι _{ΙΚ}	DC Input Diode Current V _I < GND		-50	mA
I _{ОК}	DC Output Diode Current V _O < GND		-50	mA
Ι _Ο	DC Output Source/Sink Current	±50	mA	
_{CC} or I _{GND}	DC Supply Current per Supply Pin or Gr	±100	mA	
T _{STG}	Storage Temperature Range	-65 to +150	°C	
ΤL	Lead Temperature, 1 mm from Case for 10 Seconds		260	°C
TJ	Junction Temperature under Bias		+150	°C
θ_{JA}	Thermal Resistance (Note 1)	SOIC-14	116	°C/W
		TSSOP-14	150	
PD	Power Dissipation in Still Air at 125°C	SOIC-14	116	mW
		TSSOP-14	833	
MSL	Moisture Sensitivity		Level 1	
F _R	Flammability Rating	Oxygen Index: 28 to 34	UL 94 V–0 @ 0.125 in	
V _{ESD}	ESD Withstand Voltage (Note 3)	Human Body Model	2000	V
		Charged Device Model	N/A	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. I_O absolute maximum rating must be observed.

 Measured with minimum pad spacing on an FR4 board, using 76 mm-by-114 mm, 2-ounce copper trace no air flow per JESD51–7.
 HBM tested to EIA / JESD22–A114–A. CDM tested to JESD22–C101–A. JEDEC recommends that ESD qualification to EIA/JESD22–A115A (Machine Model) be discontinued.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter			Тур	Max	Unit
V _{CC}	Supply Voltage	Operating	1.65	2.5, 3.3	5.5	V
		Data Retention Only	1.5	2.5, 3.3	5.5	
VI	Digital Input Voltage		0	-	5.5	V
V _O	Output Voltage	Active Mode (High or Low State)	0	-	V _{CC}	V
		Tri-State Mode	0	-	5.5	
		Power Down Mode ($V_{CC} = 0 V$)	0	-	5.5	
T _A	Operating Free-Air Temperature		-40	-	+125	°C
t _r , t _f	Input Rise or Fall Rate	V_{CC} = 1.65 V to 1.95 V	0	-	20	nS/V
		V_{CC} = 2.3 V to 2.7 V	0	-	20	
		V_{IN} from 0.8 V to 2.0 V, V_{CC} = 3.0 V	0	-	10	
		V_{CC} = 4.5 V to 5.5 V	0	-	5	

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

4. Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or V_{CC}). Unused outputs must be left open.

DC ELECTRICAL C	HARACTERISTICS
-----------------	----------------

				T _A = -40°C to +85°C		$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$		
Symbol	Parameter	Conditions	V _{CC} (V)	Min	Max	Min	Max	Unit
V _{IH}	HIGH Level Input Voltage		1.65 – 1.95	$0.65 \times V_{CC}$	_	$0.65 \times V_{CC}$	-	V
			2.3 – 2.7	1.7	_	1.7	-	
			3.0 - 3.6	2.0	_	2.0	-	
			4.5 – 5.5	0.70 x V _{CC}	_	0.70 x V _{CC}	_	
V _{IL}	LOW Level Input Voltage		1.65 – 1.95	-	0.35 x V _{CC}	-	0.35 x V _{CC}	V
			2.3 – 2.7	-	0.7	_	0.7	
			3.0 - 3.6	_	0.8	_	0.8	
			4.5 – 5.5	-	0.30 x V _{CC}	-	0.30 x V _{CC}	
V _{OH}	High-Level Output Voltage	$V_{I} = V_{IH} \text{ or } V_{IL}$						V
		$I_{OH} = -100 \ \mu A$	1.65 to 5.5	V _{CC} – 0.1	-	V _{CC} – 0.1 1.29	-	
		I _{OH} = –4 mA I _{OH} = –8 mA	1.65 2.3	1.29 1.8	-	1.29	_	
		$I_{OH} = -8 \text{ mA}$ $I_{OH} = -12 \text{ mA}$	2.3	2.2	_	2.2	_	
		$I_{OH} = -12 \text{ mA}$ $I_{OH} = -16 \text{ mA}$	3.0	2.4	_	2.4	_	
		$I_{OH} = -24 \text{ mA}$	3.0	2.2	_	2.2	_	
		$I_{OH} = -32 \text{ mA}$	4.5	3.7	_	3.7	_	
V _{OL}	Low-Level Output Voltage	$V_I = V_{IH} \text{ or } V_{IL}$						V
		I _{OL} = 100 μA	1.65 to 5.5	-	0.1	-	0.1	
		$I_{OL} = 4 \text{ mA}$	1.65	-	0.24	-	0.24	
		I _{OL} = 8 mA	2.3	-	0.3	-	0.3	
		I _{OL} = 12 mA	2.7	-	0.4	-	0.4	
		I _{OL} = 16 mA	3.0	-	0.4	-	0.4	
		I _{OL} = 24 mA	3.0	-	0.55	-	0.55	
		I _{OL} = 32 mA	4.5	-	0.6	-	0.6	
I _I	Input Leakage Current	$V_I = 0$ to 5.5 V	3.6	-	±5.0	-	±5.0	μA
I _{OFF}	Power Off Leakage Current	$V_{I} = 5.5 V \text{ or}$ $V_{O} = 5.5 V$	0	-	10	-	10	μA
I _{CC}	Quiescent Supply Current	$V_{I} = 5.5 \text{ V or GND}$	3.6	-	10	-	10	μA
ΔI_{CC}	Increase in I _{CC} per Input	$V_{IH} = V_{CC} - 0.6 V$	2.3 to 3.6	-	500	-	500	μA

AC ELECTRICAL CHARACTERISTICS

				T _A = -40°C	C to +85°C	$T_A = -40^{\circ}C$	to +125°C	
Symbol	Parameter	Test Condition	V _{CC} (V)	Min	Max	Min	Max	Unit
t _{PLH} , t _{PHL}	Propagation Delay,	Waveform 1	1.65 to 1.95	-	12.5	-	12.5	ns
	CPn to (On or On)		2.3 to 2.7	_	8.4	-	8.4	
			2.7	_	8.0	-	8.0	
			3.0 to 3.6	_	7.0	-	7.0	
			4.5 to 5.5	_	5.0	-	5.0	
t _{PLH} , t _{PHL}	Propagation Delay,	Waveform 2	1.65 to 1.95	_	12.5	-	12.5	ns
	$(\overline{SDn} \text{ or } \overline{CDn}) \text{ to } (On \text{ or } \overline{On})$		2.3 to 2.7	_	8.4	-	8.4	
		2.7	_	8.0	-	8.0		
			3.0 to 3.6	_	7.0	-	7.0	
			4.5 to 5.5	_	5.0	-	5.0	

MC74LCX74

Unit

MHz

ns

ns

ns

ns

ns

ns

_

_

_

_

_

1.0

_

4.5

3.0

2.5

2.5

_

_

_

_

_

_

_

_

_

_

1.0

_

AC ELECTRICAL CHARACTERISTICS (continued) $T_A = -40^{\circ}C \text{ to } +85^{\circ}C$ $T_A = -40^{\circ}C$ to $+125^{\circ}C$ Min Max Min Max Symbol Parameter **Test Condition** $V_{CC}(V)$ f_{max} **Clock Pulse Frequency** Waveform 1 1.65 to 1.95 90 _ 90 _ 2.3 to 2.7 150 _ 150 _ 2.7 150 150 _ 3.0 to 3.6 150 150 _ _ 4.5 to 5.5 150 150 Setup Time, Waveform 1 1.65 to 1.95 4.0 4.0 ts _ _ HIGH or LOW Dn to CPn 2.3 to 2.7 4.0 4.0 _ 2.7 2.5 2.5 2.5 2.5 3.0 to 3.6 4.5 to 5.5 2.5 2.5 _ t_h Hold Time, Waveform 1 1.65 to 1.95 2.0 _ 2.0 _ HIGH or LOW Dn to CPn 2.3 to 2.7 2.0 2.0 _ _ 2.7 1.5 _ 1.5 _ 3.0 to 3.6 1.5 1.5 _ 4.5 to 5.5 1.5 1.5 _ _ Pulse Width. Waveform 4 1.65 to 1.95 4.0 4.0 tw _ _ CPn HIGH or LOW 2.3 to 2.7 4.0 4.0 _ _ 2.7 3.3 3.3 3.0 to 3.6 3.3 3.3 3.3 4.5 to 5.5 3.3 Pulse Width, Waveform 4 1.65 to 1.95 4.0 4.0 _ _ SDn or CDn LOW 2.3 to 2.7 4.0 4.0 _ _ 2.7 3.6 3.6 _ _ 3.0 to 3.6 3.3 3.3 _ _ 4.5 to 5.5 3.3 3.3 _ _ Recovery Time, SDn or CDn TO CPn Waveform 3 1.65 to 1.95 4.5 4.5 trec _ _

 Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (t_{OSHL}) or LOW-to-HIGH (t_{OSLH}); parameter guaranteed by design.

2.3 to 2.7

2.7

3.0 to 3.6

4.5 to 5.5

1.65 to 1.95

2.3 to 2.7

2.7

3.0 to 3.6

4.5 to 5.5

Output to Output Skew

toshL,

tOSLH

4.5

3.0

2.5

2.5

_

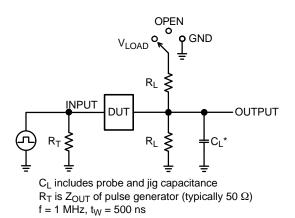
_

_

_

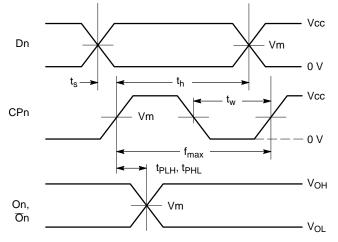
_

MC74LCX74

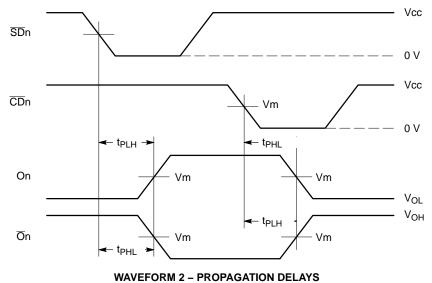

DYNAMIC SWITCHING CHARACTERISTICS

			٦	Γ _A = +25°C	;	
Symbol	Characteristic	Condition	Min	Тур	Max	Units
V _{OLP}	Dynamic LOW Peak Voltage (Note 6)	$ \begin{array}{l} {\sf V}_{CC} = 3.3 {\sf V}, {\sf C}_L = 50 {\sf pF}, {\sf V}_{IH} = 3.3 {\sf V}, {\sf V}_{IL} = 0 {\sf V} \\ {\sf V}_{CC} = 2.5 {\sf V}, {\sf C}_L = 30 {\sf pF}, {\sf V}_{IH} = 2.5 {\sf V}, {\sf V}_{IL} = 0 {\sf V} \end{array} $		0.8 0.6		V V
V _{OLV}	Dynamic LOW Valley Voltage (Note 6)	$ \begin{array}{l} {\sf V}_{CC} = 3.3 {\sf V}, {\sf C}_L = 50 {\sf pF}, {\sf V}_{IH} = 3.3 {\sf V}, {\sf V}_{IL} = 0 {\sf V} \\ {\sf V}_{CC} = 2.5 {\sf V}, {\sf C}_L = 30 {\sf pF}, {\sf V}_{IH} = 2.5 {\sf V}, {\sf V}_{IL} = 0 {\sf V} \end{array} $		-0.8 -0.6		V V

 Number of outputs defined as "n". Measured with "n-1" outputs switching from HIGH-to-LOW or LOW-to-HIGH. The remaining output is measured in the LOW state.

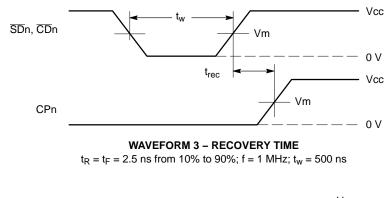

CAPACITIVE CHARACTERISTICS

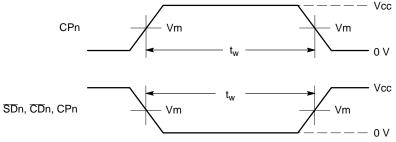
Symbol	Parameter	Condition	Typical	Units
C _{IN}	Input Capacitance	V_{CC} = 3.3 V, V_{I} = 0 V or V_{CC}	7	pF
C _{OUT}	Output Capacitance	V_{CC} = 3.3 V, V_{I} = 0 V or V_{CC}	8	pF
C _{PD}	Power Dissipation Capacitance	10 MHz, V_{CC} = 3.3 V, V_{I} = 0 V or V_{CC}	25	pF



Test	Switch Position
t _{PLH} / t _{PHL}	Open
t _{PLZ} / t _{PZL}	V _{LOAD}
t _{PHZ} / t _{PZH}	GND

Figure 3. Test Circuit





 $t_R = t_F = 2.5$ ns, 10% to 90%; f = 1 MHz; $t_W = 500$ ns

Figure 4. AC Waveforms

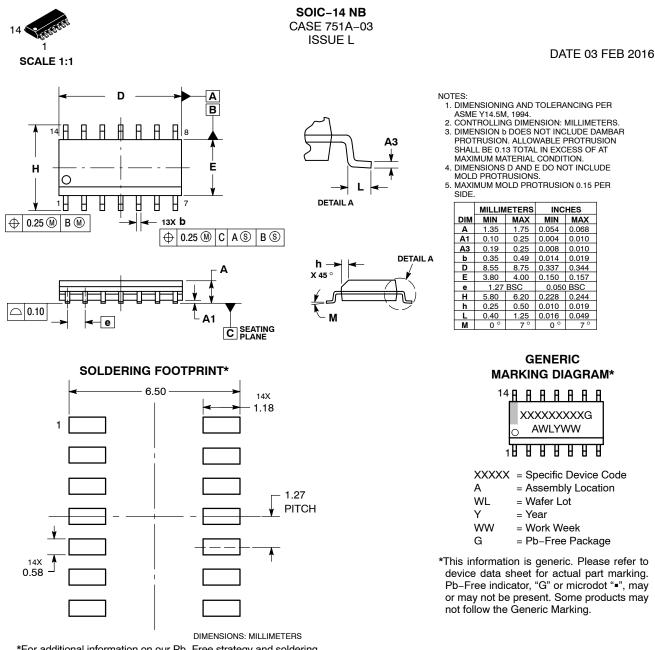
MC74LCX74

WAVEFORM 4 - PULSE WIDTH $t_R = t_F = 2.5$ ns (or fast as required) from 10% to 90%;

Output requirements: V_{OL} \leq 0.8 V, V_{OH} \geq 2.0 V

V _{CC} , V	R_{L}, Ω	C _L , pF	V _{LOAD}	V _m , V	V _Y , V
1.65 to 1.95	500	30	2 x V _{CC}	V _{CC} / 2	0.15
2.3 to 2.7	500	30	$2 \times V_{CC}$	V _{CC} / 2	0.15
2.7	500	50	6 V	1.5	0.3
3.0 to 3.6	500	50	6 V	1.5	0.3
4.5 to 5.5	500	50	2 x V _{CC}	V _{CC} / 2	0.3

Figure 4. AC	Waveforms	(Continued)
--------------	-----------	-------------


ORDERING INFORMATION

Device	Marking	Package	Shipping [†]
MC74LCX74DG	LCX74G	SOIC-14 (Pb-Free, Halide Free)	55 Units / Rail
MC74LCX74DR2G	LCX74G	SOIC-14 (Pb-Free, Halide Free)	2500 Units / Tape & Reel
MC74LCX74DTG	LCX 74	TSSOP-14 (Pb-Free, Halide Free)	96 Units / Rail
MC74LCX74DTR2G	LCX 74	TSSOP-14 (Pb-Free, Halide Free)	2500 Units / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. *–Q Suffix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q100 Qualified and PPAP

Capable.

onsemi

*For additional information on our Pb–Free strategy and soldering details, please download the **onsemi** Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

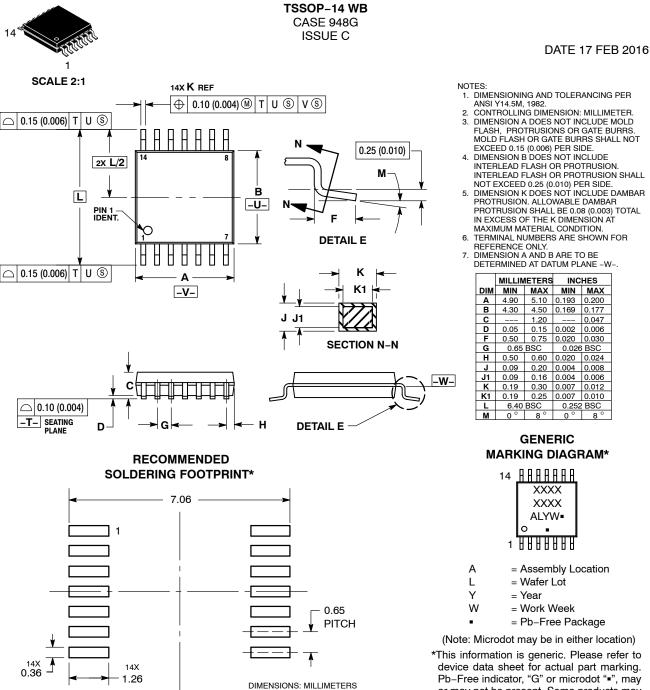
STYLES ON PAGE 2

 DOCUMENT NUMBER:
 98ASB42565B
 Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.

 DESCRIPTION:
 SOIC-14 NB
 PAGE 1 OF 2

 onsemi and ONSEMi. are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi axis me any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

SOIC-14 CASE 751A-03 ISSUE L


DATE 03 FEB 2016

STYLE 1: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. NO CONNECTION 5. ANODE/CATHODE 6. NO CONNECTION 7. ANODE/CATHODE 9. ANODE/CATHODE 10. NO CONNECTION 11. ANODE/CATHODE 12. ANODE/CATHODE 13. NO CONNECTION 14. COMMON ANODE	STYLE 2: CANCELLED	STYLE 3: PIN 1. NO CONNECTION 2. ANODE 3. ANODE 4. NO CONNECTION 5. ANODE 6. NO CONNECTION 7. ANODE 8. ANODE 9. ANODE 10. NO CONNECTION 11. ANODE 12. ANODE 13. NO CONNECTION 14. COMMON CATHODE	STYLE 4: PIN 1. NO CONNECTION 2. CATHODE 3. CATHODE 4. NO CONNECTION 5. CATHODE 6. NO CONNECTION 7. CATHODE 8. CATHODE 10. NO CONNECTION 11. CATHODE 12. CATHODE 13. NO CONNECTION 14. COMMON ANODE
STYLE 5: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. ANODE/CATHODE 5. ANODE/CATHODE 6. NO CONNECTION 7. COMMON ANODE 8. COMMON CATHODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. ANODE/CATHODE 12. ANODE/CATHODE 13. NO CONNECTION 14. COMMON ANODE	STYLE 6: PIN 1. CATHODE 2. CATHODE 3. CATHODE 4. CATHODE 5. CATHODE 6. CATHODE 7. CATHODE 8. ANODE 9. ANODE 10. ANODE 11. ANODE 12. ANODE 13. ANODE 14. ANODE	STYLE 7: PIN 1. ANODE/CATHODE 2. COMMON ANODE 3. COMMON CATHODE 4. ANODE/CATHODE 5. ANODE/CATHODE 6. ANODE/CATHODE 7. ANODE/CATHODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. COMMON CATHODE 12. COMMON CATHODE 13. ANODE/CATHODE 14. ANODE/CATHODE	STYLE 8: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. NO CONNECTION 5. ANODE/CATHODE 6. ANODE/CATHODE 7. COMMON ANODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. NO CONNECTION 12. ANODE/CATHODE 13. ANODE/CATHODE 14. COMMON CATHODE

DESCRIPTION: SOIC-14 NB PAGE 2 OF	DOCUMENT NUMBER:	98ASB42565B	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
	DESCRIPTION:	SOIC-14 NB		PAGE 2 OF 2

onsemi and ONSEMI: are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

semi

*For additional information on our Pb-Free strategy and soldering details, please download the onsemi Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98ASH70246A Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.				
DESCRIPTION:	TSSOP-14 WB		PAGE 1 OF 1		
onsemi and ONSEM), are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves					

the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales