Universal Voltage Monitors

MC34161, MC33161, NCV33161

The MC34161/MC33161 are universal voltage monitors intended for use in a wide variety of voltage sensing applications. These devices offer the circuit designer an economical solution for positive and negative voltage detection. The circuit consists of two comparator channels each with hysteresis, a unique Mode Select Input for channel programming, a pinned out 2.54 V reference, and two open collector outputs capable of sinking in excess of 10 mA. Each comparator channel can be configured as either inverting or noninverting by the Mode Select Input. This allows over, under, and window detection of positive and negative voltages. The minimum supply voltage needed for these devices to be fully functional is 2.0 V for positive voltage sensing and 4.0 V for negative voltage sensing.

Applications include direct monitoring of positive and negative voltages used in appliance, automotive, consumer, and industrial equipment.

Features
- Unique Mode Select Input Allows Channel Programming
- Over, Under, and Window Voltage Detection
- Positive and Negative Voltage Detection
- Fully Functional at 2.0 V for Positive Voltage Sensing and 4.0 V for Negative Voltage Sensing
- Pinned Out 2.54 V Reference with Current Limit Protection
- Low Standby Current
- Open Collector Outputs for Enhanced Device Flexibility
- NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- These Devices are Pb–Free and are RoHS Compliant

Figure 1. Simplified Block Diagram

(Positive Voltage Window Detector Application)

Figure 1. Simplified Block Diagram

(Please note: This diagram is for illustrative purposes only and may not be to scale.)

MARKING DIAGRAMS

PIN CONNECTIONS

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 15 of this data sheet.
MAXIMUM RATINGS (Note 1)

<table>
<thead>
<tr>
<th>Rating</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Supply Input Voltage</td>
<td>VCC</td>
<td>40</td>
<td>V</td>
</tr>
<tr>
<td>Comparator Input Voltage Range</td>
<td>Vin</td>
<td>−1.0 to +40</td>
<td>V</td>
</tr>
<tr>
<td>Comparator Output Sink Current (Pins 5 and 6) (Note 2)</td>
<td>ISink</td>
<td>20</td>
<td>mA</td>
</tr>
<tr>
<td>Comparator Output Voltage</td>
<td>Vout</td>
<td>40</td>
<td>V</td>
</tr>
<tr>
<td>Power Dissipation and Thermal Characteristics (Note 2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal Resistance, Junction-to-Air</td>
<td>PD</td>
<td>800</td>
<td>mW</td>
</tr>
<tr>
<td>D Suffix, Plastic Package, Case 751</td>
<td>RthJA</td>
<td>100</td>
<td>°C/W</td>
</tr>
<tr>
<td>Maximum Power Dissipation @ T_A = 70°C</td>
<td>P_D</td>
<td>450</td>
<td>mW</td>
</tr>
<tr>
<td>Thermal Resistance, Junction-to-Air</td>
<td>RthJA</td>
<td>178</td>
<td>°C/W</td>
</tr>
<tr>
<td>D Suffix, Plastic Package, Case 846A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maxwell Power Dissipation @ T_A = 70°C</td>
<td>P_D</td>
<td>240</td>
<td>mW</td>
</tr>
<tr>
<td>Thermal Resistance, Junction-to-Ambient</td>
<td>RthJA</td>
<td></td>
<td>°C/W</td>
</tr>
</tbody>
</table>

Operating Junction Temperature	TJ	+150	°C
Operating Ambient Temperature (Note 3)	TA		°C
MC34161		0 to +70	°C
MC33161		−40 to +105	°C
NCV33161		−40 to +125	°C

| Storage Temperature Range | Tstg | −55 to +150 | °C |

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. This device series contains ESD protection and exceeds the following tests:
 Machine Model Method 200 V.

2. Maximum package power dissipation must be observed.

3. \(T_{\text{low}} = 0^\circ\text{C} \) for MC34161, \(T_{\text{high}} = +70^\circ\text{C} \) for MC34161,
 \(-40^\circ\text{C} \) for MC33161, \(+105^\circ\text{C} \) for MC33161,
 \(-40^\circ\text{C} \) for NCV33161, \(+125^\circ\text{C} \) for NCV33161.
ELECTRICAL CHARACTERISTICS ($V_{CC} = 5.0\, \text{V}$, for typical values $T_A = 25\, ^\circ\text{C}$, for min/max values T_A is the operating ambient temperature range that applies [Notes 4 and 5], unless otherwise noted.)

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Symbol</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMPARATOR INPUTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Threshold Voltage, V_{in} Increasing ($T_A = 25, ^\circ\text{C}$) ($T_A = T_{\text{min}}$ to T_{max})</td>
<td>V_{th}</td>
<td>1.245</td>
<td>1.27</td>
<td>1.295</td>
<td>V</td>
</tr>
<tr>
<td>Threshold Voltage Variation ($V_{CC} = 2.0, \text{V}$ to 40 V)</td>
<td>ΔV_{th}</td>
<td>–</td>
<td>7.0</td>
<td>15</td>
<td>mV</td>
</tr>
<tr>
<td>Threshold Hysteresis, V_{in} Decreasing</td>
<td>V_H</td>
<td>15</td>
<td>25</td>
<td>35</td>
<td>mV</td>
</tr>
<tr>
<td>Threshold Difference [$V_{in1} - V_{in2}$]</td>
<td>V_D</td>
<td>–</td>
<td>1.0</td>
<td>15</td>
<td>mV</td>
</tr>
<tr>
<td>Reference to Threshold Difference ($V_{ref} - V_{in1}$), ($V_{ref} - V_{in2}$)</td>
<td>V_{RTD}</td>
<td>1.20</td>
<td>1.27</td>
<td>1.32</td>
<td>V</td>
</tr>
<tr>
<td>Input Bias Current ($V_{in} = 1.0, \text{V}$) ($V_{in} = 1.5, \text{V}$)</td>
<td>I_{IB}</td>
<td>–</td>
<td>40</td>
<td>200</td>
<td>nA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Symbol</th>
<th>Channel 1</th>
<th>Channel 2</th>
<th>$V_{R(CH, 1)}$</th>
<th>$V_{R(CH, 2)}$</th>
<th>$V_{ref+0.15}$</th>
<th>$V_{ref+0.23}$</th>
<th>$V_{ref+0.30}$</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>MODE SELECT INPUT</td>
<td></td>
<td>Channel 1</td>
<td>Channel 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mode Select Threshold Voltage (Figure 6)</td>
<td></td>
<td></td>
<td>Vref(CH 1)</td>
<td>Vref(CH 2)</td>
<td>Vref+0.15</td>
<td>0.3</td>
<td>Vref+0.23</td>
<td>0.63</td>
<td>Vref+0.30</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Symbol</th>
<th>Channel 1</th>
<th>Channel 2</th>
<th>V_{OL}</th>
<th>–</th>
<th>0.05</th>
<th>0.3</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMPARATOR OUTPUTS</td>
<td></td>
<td>Channel 1</td>
<td>Channel 2</td>
<td></td>
<td>–</td>
<td>0.22</td>
<td>0.6</td>
<td>V</td>
</tr>
<tr>
<td>Output Sink Saturation Voltage ($I_{\text{Sink}} = 2.0, \text{mA}$) ($I_{\text{Sink}} = 10, \text{mA}$) ($I_{\text{Sink}} = 0.25, \text{mA}, V_{CC} = 1.0, \text{V}$)</td>
<td>V_{OL}</td>
<td>–</td>
<td>0.02</td>
<td>0.2</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Off-State Leakage Current ($V_{OH} = 40, \text{V}$)</td>
<td>I_{OH}</td>
<td>–</td>
<td>0</td>
<td>1.0</td>
<td>μA</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Symbol</th>
<th>V_{ref}</th>
<th>2.48</th>
<th>2.54</th>
<th>2.60</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>REFERENCE OUTPUT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output Voltage ($I_O = 0, \text{mA}, T_A = 25, ^\circ\text{C}$)</td>
<td>V_{ref}</td>
<td>–</td>
<td>0.6</td>
<td>15</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>Load Regulation ($I_O = 0, \text{mA}$ to 2.0 mA)</td>
<td>Reg_{load}</td>
<td>–</td>
<td>5.0</td>
<td>15</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>Line Regulation ($V_{CC} = 4.0, \text{V}$ to 40 V)</td>
<td>Reg_{line}</td>
<td>–</td>
<td>0.6</td>
<td>15</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>Total Output Variation over Line, Load, and Temperature</td>
<td>ΔV_{ref}</td>
<td>2.45</td>
<td>–</td>
<td>2.60</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Short Circuit Current</td>
<td>I_{SC}</td>
<td>–</td>
<td>8.5</td>
<td>30</td>
<td>mA</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Symbol</th>
<th>Channel 1</th>
<th>Channel 2</th>
<th>I_{SC}</th>
<th>–</th>
<th>450</th>
<th>700</th>
<th>μA</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL DEVICE</td>
<td></td>
<td>Channel 1</td>
<td>Channel 2</td>
<td></td>
<td>–</td>
<td>560</td>
<td>900</td>
<td></td>
</tr>
<tr>
<td>Power Supply Current ($V_{mode}, V_{in1}, V_{in2} = \text{GND}$) ($V_{CC} = 5.0, \text{V}$) ($V_{CC} = 40, \text{V}$)</td>
<td>I_{CC}</td>
<td>–</td>
<td>450</td>
<td>700</td>
<td>μA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating Voltage Range (Positive Sensing) (Negative Sensing)</td>
<td>V_{CC}</td>
<td>2.0</td>
<td>–</td>
<td>40</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

4. Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient as possible.

5. $T_{\text{low}} = 0^\circ\text{C}$ for MC34161 $T_{\text{high}} = 70^\circ\text{C}$ for MC34161
 - -40°C for MC33161 $+105^\circ\text{C}$ for MC33161
 - -40°C for NCV33161 $+125^\circ\text{C}$ for NCV33161

www.onsemi.com
Figure 2. Comparator Input Threshold Voltage

Figure 3. Comparator Input Bias Current versus Input Voltage

Figure 4. Output Propagation Delay Time versus Percent Overdrive

Figure 5. Output Voltage versus Supply Voltage

Figure 6. Mode Select Thresholds

Figure 7. Mode Select Input Current versus Input Voltage
Figure 8. Reference Voltage versus Supply Voltage

Figure 9. Reference Voltage versus Ambient Temperature

Figure 10. Reference Voltage Change versus Source Current

Figure 11. Output Saturation Voltage versus Output Sink Current

Figure 12. Supply Current versus Supply Voltage

Figure 13. Supply Current versus Output Sink Current
Figure 14. MC34161 Representative Block Diagram

<table>
<thead>
<tr>
<th>Mode Select</th>
<th>Input 1 Pin 2</th>
<th>Output 1 Pin 6</th>
<th>Input 2 Pin 3</th>
<th>Output 2 Pin 5</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>GND</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Channels 1 & 2: Noninverting</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>V<sub>ref</sub></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>Channel 1: Noninverting</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>Channel 2: Inverting</td>
</tr>
<tr>
<td>V<sub>CC</sub> (>2.9 V)</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>Channels 1 & 2: Inverting</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Figure 15. Truth Table
Introduction

To be competitive in today’s electronic equipment market, new circuits must be designed to increase system reliability with minimal incremental cost. The circuit designer can take a significant step toward attaining these goals by implementing economical circuitry that continuously monitors critical circuit voltages and provides a fault signal in the event of an out-of-tolerance condition. The MC34161, MC33161 series are universal voltage monitors intended for use in a wide variety of voltage sensing applications. The main objectives of this series was to configure a device that can be used in as many voltage sensing applications as possible while minimizing cost. The flexibility objective is achieved by the utilization of a unique Mode Select input that is used in conjunction with traditional circuit building blocks. The cost objective is achieved by processing the device on a standard Bipolar Analog flow, and by limiting the package to eight pins. The device consists of two comparator channels each with hysteresis, a mode select input for channel programming, a pinned out reference, and two open collector outputs. Each comparator channel can be configured as either inverting or noninverting by the Mode Select input. This allows a single device to perform over, under, and window detection of positive and negative voltages. A detailed description of each section of the device is given below with the representative block diagram shown in Figure 14.

Input Comparators

The input comparators of each channel are identical, each having an upper threshold voltage of 1.27 V ±2.0% with 25 mV of hysteresis. The hysteresis is provided to enhance output switching by preventing oscillations as the comparator thresholds are crossed. The comparators have an input bias current of 60 nA at their threshold which approximates a 21.2 MΩ resistor to ground. This high impedance minimizes loading of the external voltage divider for well defined trip points. For all positive voltage sensing applications, both comparator channels are fully functional at a VCC of 2.0 V. In order to provide enhanced device ruggedness for hostile industrial environments, additional circuitry was designed into the inputs to prevent device latchup as well as to suppress electrostatic discharges (ESD).

Reference

The 2.54 V reference is pinned out to provide a means for the input comparators to sense negative voltages, as well as a means to program the Mode Select input for window detection applications. The reference is capable of sourcing in excess of 2.0 mA output current and has built-in short circuit protection. The output voltage has a guaranteed tolerance of ±2.4% at room temperature.

The 2.54 V reference is derived by gaining up the internal 1.27 V reference by a factor of two. With a power supply voltage of 4.0 V, the 2.54 V reference is in full regulation, allowing the device to accurately sense negative voltages.

Mode Select Circuit

The key feature that allows this device to be flexible is the Mode Select input. This input allows the user to program each of the channels for various types of voltage sensing applications. Figure 15 shows that the Mode Select input has three defined states. These states determine whether Channel 1 and/or Channel 2 operate in the inverting or noninverting mode. The Mode Select thresholds are shown in Figure 6. The input circuitry forms a tristate switch with thresholds at 0.63 V and Vref + 0.23 V. The mode select input current is 10 μA when connected to the reference output, and 42 μA when connected to a VCC of 5.0 V, refer to Figure 7.

Output Stage

The output stage uses a positive feedback base boost circuit for enhanced sink saturation, while maintaining a relatively low device standby current. Figure 11 shows that the sink saturation voltage is about 0.2 V at 8.0 mA over temperature. By combining the low output saturation characteristics with low voltage comparator operation, this device is capable of sensing positive voltages at a VCC of 1.0 V. These characteristics are important in undervoltage sensing applications where the output must stay in a low state as VCC approaches ground. Figure 5 shows the Output Voltage versus Supply Voltage in an undervoltage sensing application. Note that as VCC drops below the programmed 4.5 V trip point, the output stays in a well defined active low state until VCC drops below 1.0 V.

APPLICATIONS

The following circuit figures illustrate the flexibility of this device. Included are voltage sensing applications for over, under, and window detectors, as well as three unique configurations. Many of the voltage detection circuits are shown with the open collector outputs of each channel connected together driving a light emitting diode (LED). This ‘OREd’ connection is shown for ease of explanation and it is only required for window detection applications.

Note that many of the voltage detection circuits are shown with a dashed line output connection. This connection gives the inverse function of the solid line connection. For example, the solid line output connection of Figure 16 has the LED ‘ON’ when input voltage VS is above trip voltage V2, for overvoltage detection. The dashed line output connection has the LED ‘ON’ when VS is below trip voltage V2, for undervoltage detection.
The above figure shows the MC34161 configured as a dual positive overvoltage detector. As the input voltage increases from ground, the LED will turn ‘ON’ when VS1 or VS2 exceeds V2. With the dashed line output connection, the circuit becomes a dual positive undervoltage detector. As the input voltage decreases from the peak towards ground, the LED will turn ‘ON’ when VS1 or VS2 falls below V1.

For known resistor values, the voltage trip points are:

\[
V_1 = (V_{th} - V_H) \left(\frac{R_2}{R_1} + 1 \right) \\
V_2 = V_{th} \left(\frac{R_2}{R_1} + 1 \right)
\]

For a specific trip voltage, the required resistor ratio is:

\[
\frac{R_2}{R_1} = \frac{V_1}{V_{th} - V_H} - 1 \\
\frac{R_2}{R_1} = \frac{V_2}{V_{th} - 1}
\]

Figure 16. Dual Positive Overvoltage Detector

The above figure shows the MC34161 configured as a dual positive undervoltage detector. As the input voltage decreases towards ground, the LED will turn ‘ON’ when VS1 or VS2 falls below V1. With the dashed line output connection, the circuit becomes a dual positive overvoltage detector. As the input voltage increases from ground, the LED will turn ‘ON’ when VS1 or VS2 exceeds V2.

For known resistor values, the voltage trip points are:

\[
V_1 = (V_{th} - V_H) \left(\frac{R_2}{R_1} + 1 \right) \\
V_2 = V_{th} \left(\frac{R_2}{R_1} + 1 \right)
\]

For a specific trip voltage, the required resistor ratio is:

\[
\frac{R_2}{R_1} = \frac{V_1}{V_{th} - V_H} - 1 \\
\frac{R_2}{R_1} = \frac{V_2}{V_{th} - 1}
\]

Figure 17. Dual Positive Undervoltage Detector
The above figure shows the MC34161 configured as a dual negative overvoltage detector. As the input voltage increases from ground, the LED will turn 'ON' when $-V_{S1}$ or $-V_{S2}$ exceeds V_2. With the dashed line output connection, the circuit becomes a dual negative undervoltage detector. As the input voltage decreases from the peak towards ground, the LED will turn 'ON' when $-V_{S1}$ or $-V_{S2}$ falls below V_1.

For known resistor values, the voltage trip points are:

$$V_1 = \frac{R_1}{R_2} (V_{th} - V_{ref}) + V_{th}$$
$$V_2 = \frac{R_1}{R_2} (V_{th} - V_{H} - V_{ref}) + V_{th} - V_{H}$$

For a specific trip voltage, the required resistor ratio is:

$$R_1 = \frac{V_1 - V_{th}}{V_{th} - V_{ref}}$$
$$R_2 = \frac{V_2 - V_{th} + V_{H}}{V_{th} - V_{H} - V_{ref}}$$

Figure 18. Dual Negative Overvoltage Detector

The above figure shows the MC34161 configured as a dual negative undervoltage detector. As the input voltage decreases towards ground, the LED will turn 'ON' when $-V_{S1}$ or $-V_{S2}$ falls below V_1. With the dashed line output connection, the circuit becomes a dual negative overvoltage detector. As the input voltage increases from ground, the LED will turn 'ON' when $-V_{S1}$ or $-V_{S2}$ exceeds V_2.

For known resistor values, the voltage trip points are:

$$V_1 = \frac{R_1}{R_2} (V_{th} - V_{ref}) + V_{th}$$
$$V_2 = \frac{R_1}{R_2} (V_{th} - V_{H} - V_{ref}) + V_{th} - V_{H}$$

For a specific trip voltage, the required resistor ratio is:

$$R_1 = \frac{V_1 - V_{th}}{V_{th} - V_{ref}}$$
$$R_2 = \frac{V_2 - V_{th} + V_{H}}{V_{th} - V_{H} - V_{ref}}$$

Figure 19. Dual Negative Undervoltage Detector
The above figure shows the MC34161 configured as a positive voltage window detector. This is accomplished by connecting channel 1 as an undervoltage detector and channel 2 as an overvoltage detector. When the input voltage V_S falls out of the window established by V_1 and V_4, the LED will turn 'ON'. As the input voltage falls within the window, V_S increasing from ground and exceeding V_2, or V_S decreasing from the peak towards ground and falling below V_3, the LED will turn 'OFF'. With the dashed line output connection, the LED will turn 'ON' when the input voltage V_S is within the window.

For known resistor values, the voltage trip points are:

$$V_1 = \left(V_{th1} - V_H1\right)\left(\frac{R_3}{R_1 + R_2} + 1\right)$$
$$V_2 = \left(V_{th1}\right)\left(\frac{R_3}{R_1 + R_2} + 1\right)$$
$$V_3 = \left(V_{in2} - V_{H2}\right)\left(\frac{R_2 + R_3}{R_1} + 1\right)$$
$$V_4 = \left(V_{in2}\right)\left(\frac{R_2 + R_3}{R_1} + 1\right)$$

For a specific trip voltage, the required resistor ratio is:

$$\frac{R_2}{R_1} = \frac{V_4 - V_{in2}}{V_2 - V_{in2}}$$

Figure 20. Positive Voltage Window Detector

The above figure shows the MC34161 configured as a negative voltage window detector. When the input voltage $-V_S$ falls out of the window established by V_1 and V_4, the LED will turn 'ON'. As the input voltage falls within the window, V_S increasing from ground and exceeding V_2, or V_S decreasing from the peak towards ground and falling below V_3, the LED will turn 'OFF'. With the dashed line output connection, the LED will turn 'ON' when the input voltage $-V_S$ is within the window.

For known resistor values, the voltage trip points are:

$$V_1 = \left(V_{th1} - V_{H1}\right)\left(\frac{R_3}{R_1 + R_2} + 1\right)$$
$$V_2 = \left(V_{th1}\right)\left(\frac{R_3}{R_1 + R_2} + 1\right)$$
$$V_3 = \left(V_{in2} - V_{H2}\right)\left(\frac{R_2 + R_3}{R_1} + 1\right)$$
$$V_4 = \left(V_{in2}\right)\left(\frac{R_2 + R_3}{R_1} + 1\right)$$

For a specific trip voltage, the required resistor ratio is:

$$\frac{R_2}{R_1} = \frac{V_3(V_4 - V_{in2})}{V_3(V_4 - V_{in2}) - 1}$$

$$\frac{R_3}{R_1} = \frac{V_4(V_2 - V_{in2})}{V_2 x V_{in2}}$$

Figure 21. Negative Voltage Window Detector
The above figure shows the MC34161 configured as a positive and negative overvoltage detector. As the input voltage increases from ground, the LED will turn 'ON' when either $-V_{S1}$ exceeds V_2, or V_{S2} exceeds V_4. With the dashed line output connection, the circuit becomes a positive and negative undervoltage detector. As the input voltage decreases from the peak towards ground, the LED will turn 'ON' when either V_2 falls below V_3, or $-V_{S1}$ falls below V_1.

For known resistor values, the voltage trip points are:

For a specific trip voltage, the required resistor ratio is:

$$V_1 = \frac{R_3}{R_4} (V_{th1} - V_{ref}) + V_{th1}$$
$$V_2 = \frac{R_3}{R_4} (V_{th1} - V_{ref}) + V_{th1} - V_{h1}$$
$$V_3 = V_{n2} = \frac{R_2}{R_1} (V_{th} + V_{h2}) + 1$$
$$V_4 = V_{n2} = R_2 (R_1 + 1)$$

$$R_3 = \frac{V_{th1} - V_{ref}}{V_{th1} - V_{ref}}$$
$$R_4 = \frac{V_{h2}}{V_{h2}}$$

Figure 22. Positive and Negative Overvoltage Detector

The above figure shows the MC34161 configured as a positive and negative undervoltage detector. As the input voltage decreases toward ground, the LED will turn 'ON' when either V_{S1} falls below V_1, or $-V_{S2}$ falls below V_3. With the dashed line output connection, the circuit becomes a positive and negative overvoltage detector. As the input voltage increases from the ground, the LED will turn 'ON' when either V_{S1} exceeds V_2, or $-V_{S1}$ exceeds V_4.

For known resistor values, the voltage trip points are:

$$V_1 = (V_{th1} - V_{ref}) + V_{th1}$$
$$V_2 = V_{th1} + 1$$
$$V_3 = \frac{R_2}{R_1} (V_{th} - V_{ref}) + V_{th2}$$
$$V_4 = \frac{R_2}{R_1} (V_{th} - V_{ref}) + V_{h2}$$

For a specific trip voltage, the required resistor ratio is:

$$R_3 = \frac{V_{th1} - V_{ref}}{V_{th1} - V_{ref}} - 1$$
$$R_4 = \frac{V_{h2}}{V_{h2}}$$

$$R_3 = \frac{V_{th1}}{V_{h1}}$$
$$R_4 = \frac{V_{th1}}{V_{h1}} - 1$$

Figure 23. Positive and Negative Undervoltage Detector
MC34161, MC33161, NCV33161

The above figure shows the MC34161 configured as an overvoltage detector with an audio alarm. Channel 1 monitors input voltage V_S while channel 2 is connected as a simple RC oscillator. As the input voltage increases from ground, the output of channel 1 allows the oscillator to turn 'ON' when V_S exceeds V_2.

For known resistor values, the voltage trip points are:

$$V_1 = (V_{ih} - V_H) \left(\frac{R_2}{R_1} + 1 \right)$$
$$V_2 = V_{th} \left(\frac{R_2}{R_1} + 1 \right)$$

For a specific trip voltage, the required resistor ratio is:

$$\frac{R_2}{R_1} = \frac{V_1}{V_{ih} - V_H} - 1$$
$$\frac{R_2}{R_1} = \frac{V_2}{V_{th} - 1}$$

Figure 24. Overvoltage Detector with Audio Alarm

The above figure shows the MC34161 configured as a microprocessor reset with a time delay. Channel 2 monitors input voltage V_S while channel 1 performs the time delay function. As the input voltage decreases towards ground, the output of channel 2 quickly discharges C_{DLY} when V_S falls below V_1. As the input voltage increases from ground, the output of channel 2 allows R_{DLY} to charge C_{DLY} when V_S exceeds V_2.

For known resistor values, the voltage trip points are:

$$V_1 = (V_{ih} - V_H) \left(\frac{R_2}{R_1} + 1 \right)$$
$$V_2 = V_{th} \left(\frac{R_2}{R_1} + 1 \right)$$

For a specific trip voltage, the required resistor ratio is:

$$\frac{R_2}{R_1} = \frac{V_1}{V_{ih} - V_H} - 1$$
$$\frac{R_2}{R_1} = \frac{V_2}{V_{th} - 1}$$

For known R_{DLY} C_{DLY} values, the reset time delay is:

$$t_{DLY} = R_{DLY} C_{DLY} \ln \left(\frac{1}{V_{th}} \right)$$

Figure 25. Microprocessor Reset with Time Delay
The above circuit shows the MC34161 configured as an automatic line voltage selector. The IC controls the triac, enabling the circuit to function as a fullwave voltage doubler or a fullwave bridge. Channel 1 senses the negative half cycles of the AC line voltage. If the line voltage is less than 150 V, the circuit will switch from bridge mode to voltage doubling mode after a preset time delay. The delay is controlled by the 100 kΩ resistor and the 10 µF capacitor. If the line voltage is greater than 150 V, the circuit will immediately return to fullwave bridge mode.

Figure 26. Automatic AC Line Voltage Selector
The above figure shows the MC34161 configured as a step-down converter. Channel 1 monitors the output voltage while Channel 2 performs the oscillator function. Upon initial powerup, the converter's output voltage will be below nominal, and the output of Channel 1 will allow the oscillator to run. The external switch transistor will eventually pump up the output capacitor until its voltage exceeds the input threshold of Channel 1. The output of Channel 1 will then switch low and disable the oscillator. The oscillator will commence operation when the output voltage falls below the lower threshold of Channel 1.
ORDERING INFORMATION

<table>
<thead>
<tr>
<th>Device</th>
<th>Package</th>
<th>Shipping†</th>
</tr>
</thead>
<tbody>
<tr>
<td>MC34161PG</td>
<td>PDIP–8</td>
<td>50 Units / Rail</td>
</tr>
<tr>
<td></td>
<td>(Pb–Free)</td>
<td></td>
</tr>
<tr>
<td>MC34161DG</td>
<td>SOIC–8</td>
<td>98 Units / Rail</td>
</tr>
<tr>
<td></td>
<td>(Pb–Free)</td>
<td></td>
</tr>
<tr>
<td>MC34161DR2G</td>
<td>Micro8</td>
<td>2500 / Tape & Reel</td>
</tr>
<tr>
<td></td>
<td>(Pb–Free)</td>
<td></td>
</tr>
<tr>
<td>MC33161PG</td>
<td>PDIP–8</td>
<td>4000 / Tape & Reel</td>
</tr>
<tr>
<td></td>
<td>(Pb–Free)</td>
<td></td>
</tr>
<tr>
<td>MC33161DG</td>
<td>SOIC–8</td>
<td>4000 / Tape & Reel</td>
</tr>
<tr>
<td></td>
<td>(Pb–Free)</td>
<td></td>
</tr>
<tr>
<td>MC33161DR2G</td>
<td>Micro8</td>
<td>4000 / Tape & Reel</td>
</tr>
<tr>
<td></td>
<td>(Pb–Free)</td>
<td></td>
</tr>
<tr>
<td>NCV33161DR2G*</td>
<td>Micro8</td>
<td>4000 / Tape & Reel</td>
</tr>
<tr>
<td></td>
<td>(Pb–Free)</td>
<td></td>
</tr>
<tr>
<td>NCV33161DMR2G*</td>
<td>Micro8</td>
<td>4000 / Tape & Reel</td>
</tr>
<tr>
<td></td>
<td>(Pb–Free)</td>
<td></td>
</tr>
</tbody>
</table>

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

*NCV: T_{\text{low}} = -40°C, T_{\text{high}} = +125°C. Guaranteed by design. NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q100 Qualified and PPAP Capable.
NOTES:
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.
6. 751−01 THRU 751−06 ARE OBSOLETE. NEW STANDARD IS 751−07.

SOLDERING FOOTPRINT*

GENERIC MARKING DIAGRAM*

*For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

STYLES ON PAGE 2
Description

SOIC-8 NB
CASE 751-07
ISSUE AK

DATE 16 FEB 2011

Document Number:

98ASB42564B

Electronic versions are uncontrolled except when accessed directly from the Document Repository.

Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.

© Semiconductor Components Industries, LLC, 2019

www.onsemi.com

STYLE 1:

STYLE 2:

STYLE 3:

STYLE 4:

STYLE 5:

STYLE 6:

STYLE 7:

STYLE 8:

STYLE 9:

STYLE 10:

STYLE 11:

STYLE 12:

STYLE 13:

STYLE 14:

STYLE 15:

STYLE 16:

STYLE 17:

STYLE 18:

STYLE 19:

STYLE 20:

STYLE 21:

STYLE 22:

STYLE 23:

STYLE 24:

STYLE 25:

STYLE 26:

STYLE 27:

STYLE 28:

STYLE 29:

STYLE 30:

onsemi and **Onsemi** are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.
NOTES:
2. CONTROLLING DIMENSION MILLIMETERS
3. DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.00 mm IN EXCESS OF MAXIMUM MATERIAL CONDITION.
4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSION OR GATE BURNS. MOLD FLASH, PROTRUSIONS, OR GATE BURNS SHALL NOT EXCEED 0.15 mm PER SIDE. DIMENSION E DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 mm PER SIDE.
5. DATUMS A AND B ARE TO BE DETERMINED AT DATUM F.
6. A1 IS DEFINED AS THE VERTICAL DISTANCE FROM THE SEATING PLANE TO THE LOWEST POINT ON THE PACKAGE BODY.

RECOMMENDED MOUNTING FOOTPRINT

NOTE 3

<table>
<thead>
<tr>
<th>DIM</th>
<th>MILLIMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>---</td>
</tr>
<tr>
<td>A1</td>
<td>0.05 0.08</td>
</tr>
<tr>
<td>b</td>
<td>0.25 0.33</td>
</tr>
<tr>
<td>c</td>
<td>0.13 0.18</td>
</tr>
<tr>
<td>D</td>
<td>2.90 3.00</td>
</tr>
<tr>
<td>E</td>
<td>2.90 3.00</td>
</tr>
<tr>
<td>e</td>
<td>0.65 BSC</td>
</tr>
<tr>
<td>H2</td>
<td>4.75 4.90</td>
</tr>
<tr>
<td>L</td>
<td>0.40 0.55</td>
</tr>
</tbody>
</table>

A1: PIN 1. SOURCE 1
A2: SOURCE 2
A3: SOURCE 3
A4: SOURCE 4
A5: SOURCE 5
A6: SOURCE 6
A7: SOURCE 7
A8: SOURCE 8

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "**", may or may not be present. Some products may not follow the Generic Marking.

(1) For additional information on the latest specifications and symbols, refer to the Generic Marking Diagram, 6/2004.

(2) ON Semiconductor does not convey any license to its patent rights nor the rights of others.

© Semiconductor Components Industries, LLC, 2019 www.onsemi.com