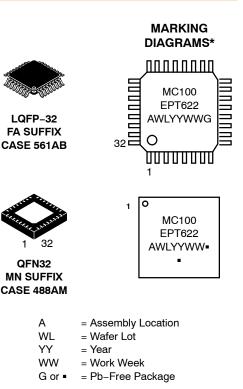
onsemi

3.3 V LVTTL/LVCMOS to LVPECL Translator


MC100EPT622

Description

The MC100EPT622 is a 10–Bit LVTTL/LVCMOS to LVPECL translator. Because LVPECL (Positive ECL) levels are used only +3.3 V and ground are required. The device has an OR–ed enable input which can accept either LVPECL (ENPECL) or TTL/LVCMOS inputs (ENTTL). If the inputs are left open, they will default to the enable state. The device design has been optimized for low channel–to–channel skew.

Features

- 450 ps Typical Propagation Delay
- Maximum Frequency > 1.5 GHz Typical
- PECL Mode
- Operating Range: $V_{CC} = 3.0 \text{ V}$ to 3.8 V with $V_{EE} = 0 \text{ V}$
- PNP LVTTL Inputs for Minimal Loading
- Q Output Will Default HIGH with Inputs Open
- The 100 Series Contains Temperature Compensation
- These Devices are Pb-Free, Halogen Free and are RoHS Compliant

(Note: Microdot may be in either location)

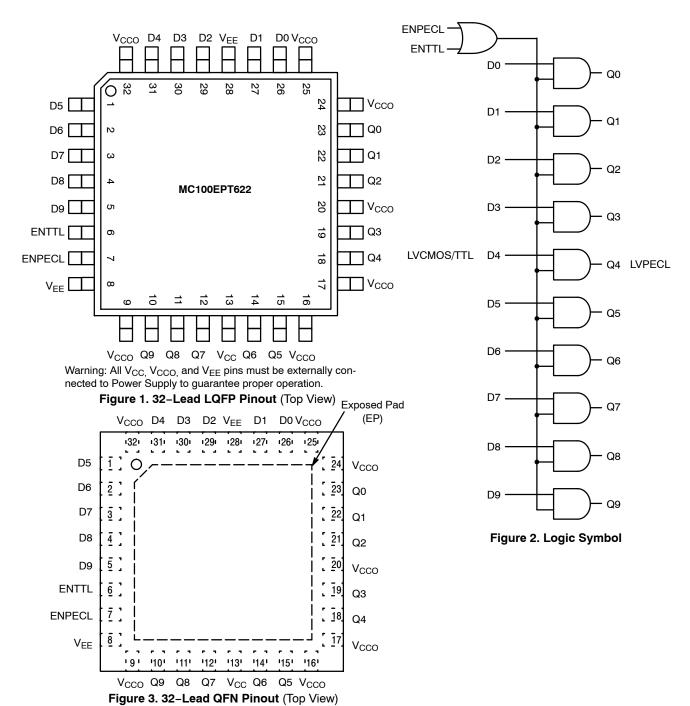

*For additional marking information, refer to Application Note <u>AND8002/D</u>.

Table 1. TRUTH TABLE

ENPECL	ENTTL	D	Q
н	х	Н	Н
н	х	L	L
х	Н	Н	Н
x	Н	L	L
L	L	х	L

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 6 of this data sheet.

Table 1. PIN DESCRIPTION

Pin	Function
D0:9	Data Input (TTL)
Q0:9	Data Outputs (PECL)
ENTTL	Enable Control (TTL)
ENPECL	Enable Control (PECL)
V _{CC} , V _{CCO}	Positive Supply
V _{EE}	Ground
EP	The exposed pad (EP) on the QFN–32 package bottom is thermally connected to the die for improved heat transfer out of the package. The exposed pad must be attached to a heat–sinking conduit. The pad is electrically connected to V_{EE} .

Table 2. ATTRIBUTES

Characteristics	Value
Internal Input Pulldown Resistor	N/A
Internal Input Pullup Resistor	N/A
ESD Protection Human Body Model Machine Model Charged Device Model	> 2 kV > 150 V > 2 kV
Moisture Sensitivity, Indefinite Time Out of Drypack	Pb-Free Pkg
LQFP-32 QFN-32	Level 2 Level 1
Flammability Rating Oxygen Index: 28 to 34	UL 94 V–0 @ 0.125 in
Transistor Count	596 Devices
Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test	•

Table 3. MAXIMUM RATINGS

Symbol	Parameter	Condition 1	Condition 2	Rating	Unit
V _{CC}	Power Supply	V _{EE} = 0 V		5	V
VI	Input Voltage	V _{EE} = 0 V	$V_I \leq V_{CC}$	5 to 0	V
l _{out}	Output Current	Continuous Surge		50 100	mA mA
T _A	Operating Temperature Range			-40 to +85	°C
T _{stg}	Storage Temperature Range			-65 to +150	°C
θ_{JA}	Thermal Resistance (Junction-to-Ambient)	0 lfpm 500 lfpm	32 LQFP 32 LQFP	80 55	°C/W °C/W
θ_{JC}	Thermal Resistance (Junction-to-Case)	Standard Board	32 LQFP	12 to 17	°C/W
θ_{JA}	Thermal Resistance (Junction-to-Ambient)	0 lfpm 500 lfpm	QFN-32 QFN-32	31 27	°C/W °C/W
θJC	Thermal Resistance (Junction-to-Case)	2S2P	QFN-32	12	°C/W
T _{sol}	Wave Solder			265	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

Table 4. TTL INPUT DC CHARACTERISTICS (V_{CC} = 3.3 V, GND= 0.0 V, T_A = -40° C to 85° C)

Symbol	Characteristic	Condition	Min	Тур	Max	Unit
I _{IH}	Input HIGH Current	V _{IN} = 2.7 V			25	μΑ
I _{IHH}	Input HIGH Current MAX	$V_{IN} = V_{CC}$			100	μΑ
IIL	Input LOW Current	V _{IN} = 0.5 V			-0.6	mA
V _{IK}	Input Clamp Voltage	I _{IN} = -18 mA	-1.2	-0.9		V
V _{IH}	Input HIGH Voltage		2.0			V
V _{IL}	Input LOW Voltage				0.8	V

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm.

Table 5. PECL INPUT DC CHARACTERISTICS V_{CC} = 3.3 V, GND= 0.0 V, T_A = -40° C to 85° C

Symbol	Characteristic Condition		Min	Тур	Max	Unit
I _{IH}	Input HIGH Current	V _{IN} = 2420 mV			150	μΑ
Ι _{ΙL}	Input LOW Current	V _{IN} = 1490 mV			200	μA
V _{IH}	Input HIGH Voltage		2075		2420	mV
VIL	Input LOW Voltage		1490		1675	mV

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm.

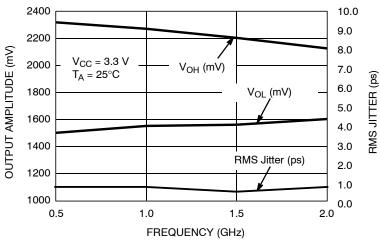
Table 6. PECL OUTPUT DC CHARACTERISTICS V_{CC} = 3.3 V, GND = 0.0 V (Note 1)

		-40°C		25°C			85°C				
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
IEE	Power Supply Current	85	115	145	90	120	155	95	130	155	mA
V _{OH}	Output High Voltage (Note 2)	2155	2280	2405	2155	2280	2405	2155	2280	2405	mV
V _{OL}	Output Low Voltage (Note 2)	1355	1520	1700	1355	1520	1700	1355	1520	1700	mV

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm.

1. Input and output parameters vary 1:1 with $V_{\mbox{CC}}.$

2. All loading with 50 Ω to V_{CC}–2.0 V.


Table 7. AC CHARACTERISTICS V_{CC} = 3.0 V to 3.8 V (Note 3)

			-40°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
f _{max}	Maximum Frequency (See Figure 4)	1.0	1.5		1.0	1.5		1.0	1.5		GHz
t _{PLH} , t _{PHL}	Propagation Delay to Output (Figure 5, Note 4) D to Q ENPECL to Q ENTTL to Q	100 150 300	450 500 450	800 875 800	100 150 300	500 500 500	875 875 800	100 200 300	500 550 500	800 925 800	ps
t _{JITTER}	Random Clock Jitter (RMS) (See Figure 4)		0.7	3.0		0.7	3.0		0.7	3.0	ps
t _r / t _f	Output Rise/Fall Times (20% – 80%)	100	200	450	100	200	250	100	200	300	ps
T _{SKEW}	Duty Cycle Skew (Note 5) D to Q Channel 0–7 Channel 8–9 ENPECL to Q ENTTL to Q		120 200 120 100	375 775 400 275		120 200 120 100	375 775 400 275		120 200 120 100	375 775 400 275	ps

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm.

3. Measured using a 2.4 V source, 50% duty cycle clock source. All loading with 50 Ω to V_{CC}-2.0 V.

4. 1.5 V to 50% point of the output. 5. Duty cycle skew $|t_{PLH} - t_{PHL}|$ on the specific path.

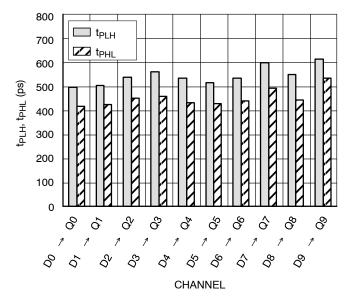


Figure 5. Average Propagation Delay (3.3 V, 25°C)

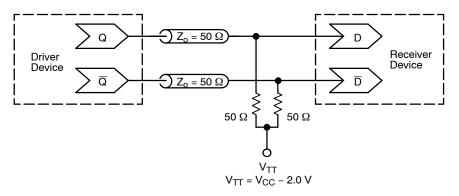
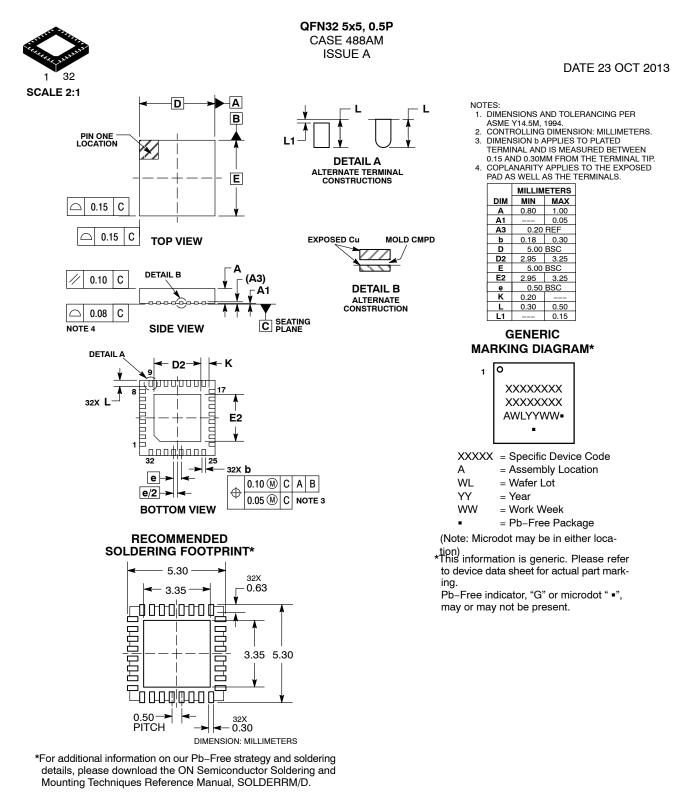


Figure 6. Typical Termination for Output Driver and Device Evaluation (See Application Note <u>AND8020/D</u> – Termination of ECL Logic Devices.)

ORDERING INFORMATION


Device	Package	Shipping
MC100EPT622FAG	LQFP–32 (Pb–Free)	250 Units / Tray
MC100EPT622MNG	QFN32 (Pb-Free)	74 Units / Rail

Resource Reference of Application Notes

AN1405/D	-	ECL Clock Distribution Techniques
AN1406/D	-	Designing with PECL (ECL at +5.0 V)
AN1503/D	-	ECLinPS [™] I/O SPiCE Modeling Kit
AN1504/D	-	Metastability and the ECLinPS Family
AN1568/D	-	Interfacing Between LVDS and ECL
AN1672/D	-	The ECL Translator Guide
AND8001/D	-	Odd Number Counters Design
AND8002/D	-	Marking and Date Codes
AND8020/D	-	Termination of ECL Logic Devices
AND8066/D	-	Interfacing with ECLinPS
AND8090/D	-	AC Characteristics of ECL Devices

ECLinPS is a trademark of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries.

<u>Onsemi</u>

DOCUMENT NUMBER:	98AON20032D	Electronic versions are uncontrolled except when accessed directly from Printed versions are uncontrolled except when stamped "CONTROLLED (the Document Repository. COPY" in red.				
DESCRIPTION:	QFN32 5x5 0.5P		PAGE 1 OF 1				
	onsemi and ONSEMi. are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular						

the right to make changes without further notice to any products herein. **onsemi** makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. **onsemi** does not convey any license under its patent rights or the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>