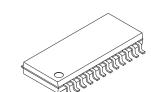
ON Semiconductor

Is Now

To learn more about onsemi™, please visit our website at www.onsemi.com


onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application,

PLL Frequency Synthesizer for Electronic Tuning

ON

ON Semiconductor®

www.onsemi.com

SOIC24W / MFP24SJ (300 mil)

Overview

The LC72121MA are high input sensitivity (20 mVrms@130 MHz) PLL frequency synthesizers for 3 V systems. These ICs are serial data (CCB*) compatible with the LC72131K/KMA, and feature the improved input sensitivity and lower spurious radiation (provided by a redesigned ground system) required in high-performance AM/FM tuners.

Features

- High-speed programmable divider
 - FMIN: 10 to 160 MHz ···· Pulse swallower technique

(With built-in divide-by-2 prescaler)

- AMIN: 2 to 40 MHz ······ Pulse swallower technique 0.5 to 10 MHz ···· Direct division technique
- IF counter
 - IFIN: 0.4 to 15 MHz ······ For AM and FM IF counting
- Reference frequency
 - One of 12 reference frequencies can be selected (using a 4.5 or 7.2 MHz crystal element)

1, 3, 5, 9, 10, 3.125, 6.25, 12.5, 15, 25, 50, and 100 kHz

- Phase comparator
 - Supports dead zone control
 - Built-in unlocked state detection circuit
 - Built-in deadlock clear circuit
 - An MOS transistor for an active low-pass filter is built in.
- I/O ports
 - Output-only ports: 4 pins
 - I/O ports: 2 pins
 - Supports the output of a clock time base signal.
- Serial data I/O
 - Support CCB* format communication with the system controller.
- Operating ranges

Supply voltage : 2.7 to 3.6 V
 Operating temperature : -40 to +85°C

- Package
 - MFP24SJ (300 mil)

ORDERING INFORMATION

See detailed ordering and shipping information on page 24 of this data sheet.

^{*} Computer Control Bus (CCB) is an ON Semiconductor's original bus format and the bus addresses are controlled by ON Semiconductor.

Specifications

Absolute Maximum Ratings at Ta = 25°C, V_{SSd} = V_{SSa} = V_{SSX} = 0 V

Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage	V _{DD} max	V _{DD}	-0.3 to +7.0	V
Maximum input voltage	V _{IN} 1 max	CE, CL, DI, AIN	-0.3 to +7.0	V
	V _{IN} 2 max	XIN, FMIN, AMIN, IFIN	-0.3 to V _{DD} +0.3	V
	V _{IN} 3 max	101, 102	-0.3 to +15	V
Maximum output voltage	V _O 1 max	DO	-0.3 to +7.0	V
	V _O 2 max	XOUT, PD	-0.3 to V _{DD} +0.3	V
	V _O 3 max	BO1 to BO4, IO1, IO2, AOUT	-0.3 to +15	V
Maximum output current	I _O 1 max	DO, AOUT	0 to 6.0	mA
	I _O 2 max	BO1 to BO4, IO1, IO2	0 to 10	mA
Allowable power dissipation	Pd max	(Ta ≤ 85°C)	200	mW
Operating temperature	Topr		-40 to +85	°C
Storage temperature	Tstg		-55 to +125	°C

Note 1: Power pins V_{DD} and V_{SS}: Insert a capacitor with a capacitance of 2,000 pF or higher between these pins when using the IC.

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

Allowable Operating Ranges at Ta = -40 to +85°C, V_{SSd} = V_{SSa} = V_{SSX} = 0 V

Parameter	Symbol	Pin	Conditions		Unit		
Farameter	Syllibol	FIII	Conditions	min	typ	max	
Supply voltage	V_{DD}	V_{DD}		2.7		3.6	V
Input high-level	V _{IH} 1	CE, CL, DI		0.7V _{DD}		6.5	V
voltage	V _{IH} 2	ĪO1, ĪO2		0.7V _{DD}		13	V
Input low-level voltage	V _{IL}	CE, CL, DI, IO1, IO2		0		0.3V _{DD}	V
Output voltage	V _O 1	DO		0		6.5	V
	V _O 2	BO1 to BO4, IO1, IO2, AOUT		0		13	V
Input frequency	f _{IN} 1	XIN	V _{IN} 1	1.0		8.0	MHz
	f _{IN} 2	FMIN	V _{IN} 2	10		160	MHz
	f _{IN} 3	AMIN	V _{IN} 3 (SNS = 1)	2.0		40	MHz
	f _{IN} 4	AMIN	V _{IN} 4 (SNS = 0)	0.5		10	MHz
	f _{IN} 5	IFIN	V _{IN} 5	0.4		15	MHz
Guaranteed crystal oscillator frequency	X'tal	XIN, XOUT	Note 2	4.0		8.0	MHz
Input amplitude	V _{IN} 1	XIN	f _{IN} 1	200		800	mVrms
	V _{IN} 2-1	FMIN	f = 10 to 130 MHz	20		800	mVrms
	V _{IN} 2-2	FMIN	f = 130 to 160 MHz	40		800	mVrms
	V _{IN} 3	AMIN	f _{IN} 3 (SNS = 1)	40		800	mVrms
	V _{IN} 4	AMIN	f _{IN} 4 (SNS = 0)	40		800	mVrms
	V _{IN} 5	IFIN	f _{IN} 5 (IFS = 1)	40		800	mVrms
	V _{IN} 6	IFIN	f _{IN} 5 (IFS = 0)	70		800	mVrms
Data setup time	tsu	DI, CL	Note 3	0.75			μS
Data hold time	tHD	DI, CL	Note 3	0.75			μS
Clock low level time	tCL	CL	Note 3	0.75			μS
Clock high level time	tCH	CL	Note 3	0.75			μS
CE wait time	t _{EL}	CE, CL	Note 3	0.75			μS
CE setup time	t _{ES}	CE, CL	Note 3	0.75			μS
CE hold time	tEH	CE, CL	Note 3	0.75			μS
Data latch change time	tLC		Note 3			0.75	μS
Data output time	t _{DC}	DO, CL	Differs depending				
	^t DH	DO, CE	on the value of the pull-up resistor. Note 3			0.35	μS

Note 2: Recommended crystal oscillator CI values:

 $CI \le 120 \Omega$ (For a 4.5 MHz crystal)

 $CI \le 70 \Omega$ (For a 7.2 MHz crystal)

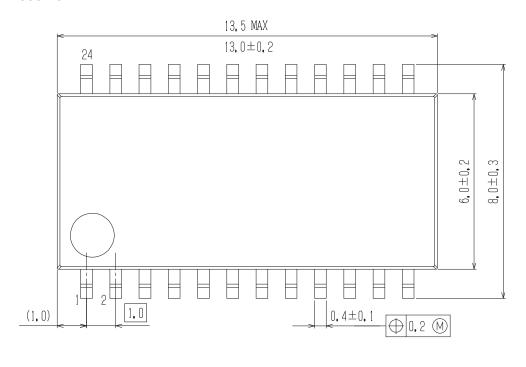
The characteristics of the oscillation circuit depends on the printed circuit board, circuit constants, and other factors.

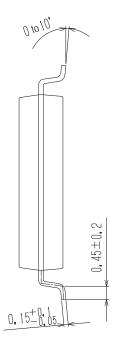
Therefore we recommend consulting with the anufacturer of the crystal for evaluation and reliability.

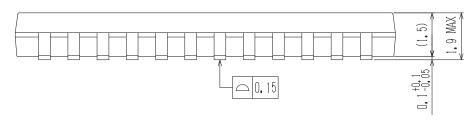
Note 3: Refer to "Serial Data Timing".

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

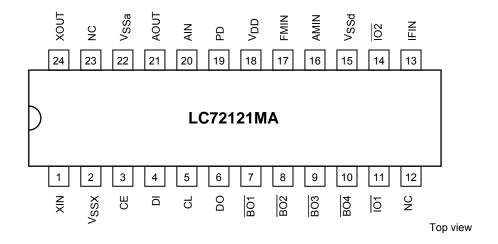
Electrical Characteristics in the Allowable Operating Ranges

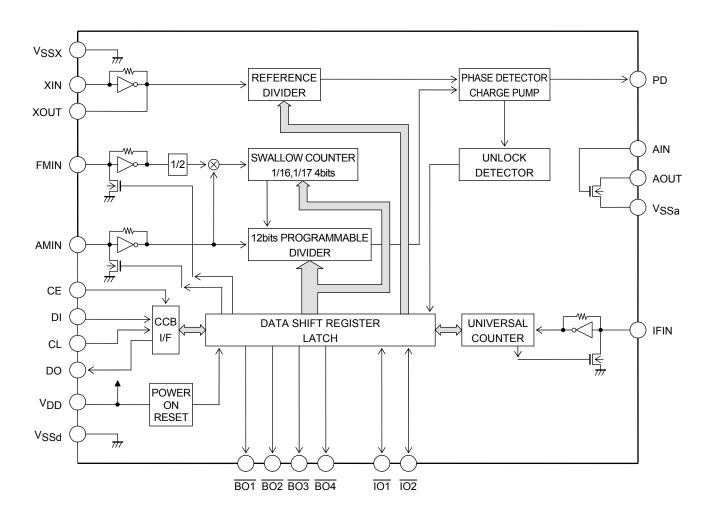

Parameter	Symbol	Pin	Conditions		Ratings		Unit
Farameter	Symbol	FIII	Conditions	min	typ	max	Offic
Internal feedback	Rf1	XIN			1.0		МΩ
resistance	Rf2	FMIN			500		kΩ
	Rf3	AMIN			500		kΩ
	Rf4	IFIN			250		kΩ
Internal pull-down	Rpd1	FMIN		100	200	400	kΩ
resistance	Rpd2	AMIN		100	200	400	kΩ
Hysteresis	V _{HIS}	CE, CL, DI			0.1V _{DD}		V
Output high-level voltage	V _{OH}	PD	I _O = -1 mA	V _{DD} -1.0			V
Output low-level	V _{OL} 1	PD	I _O = 1 mA			1.0	V
voltage	V _{OL} 2	$\overline{BO1}$ to $\overline{BO4}$, $\overline{IO1}$,	I _O = 1 mA			0.2	V
	VOL2	ĪO2	I _O = 8 mA			1.6	V
	V _{OL} 3	D0	I _O = 1 mA			0.2	V
	VOL3	DO	I _O = 5 mA			1.0	V
	V _{OL} 4	AOUT	I _O = 1 mA, AIN = 1.3 V			0.5	V
Input high-level	I _{IH} 1	CE, CL, DI	V _I = 6.5 V			5.0	μА
current	I _{IH} 2	ĪO1, ĪO2	V _I = 13 V			5.0	μА
	I _{IH} 3	XIN	$V_I = V_{DD}$	1.3		8	μА
	I _{IH} 4	FMIN, AMIN	$V_I = V_{DD}$	2.5		15	μА
	I _{IH} 5	IFIN	$V_I = V_{DD}$	5.0		30	μА
	I _{IH} 6	AIN	V _I = 6.5 V			200	nA
Input low-level	I _{IL} 1	CE, CL, DI	V _I = 0 V			5.0	μА
current	I _{IL} 2	IO1, IO2	V _I = 0 V			5.0	μА
	I _{IL} 3	XIN	V _I = 0 V	1.3		8	μА
	I _{IL} 4	FMIN, AMIN	V _I = 0 V	2.5		15	μА
	I _{IL} 5	IFIN	V _I = 0 V	5.0		30	μА
	I _I L6	AIN	V _I = 0 V			200	nA
Output off leakage current	I _{OFF} 1	$\overline{\text{BO1}}$ to $\overline{\text{BO4}}$, AOUT, $\overline{\text{IO1}}$, $\overline{\text{IO2}}$	V _O = 13 V			5.0	μА
	I _{OFF} 2	DO	V _O = 6.5 V			5.0	μА
High-level 3-state off leakage current	loffh	PD	V _O = V _{DD}		0.01	200	nA
Low-level 3-state off leakage current	loffL	PD	V _O = 0 V		0.01	200	nA
Input capacitance	C _{IN}	FMIN			6		pF
Supply current	I _{DD} 1	V _{DD}	X'tal = 7.2 MHz $f_{IN}2 = 130 \text{ MHz}$ $V_{IN}2 = 20 \text{ mVrms}$		2.5	6	mA
	I _{DD} 2	V _{DD}	PLL block stopped (PLL INHIBIT mode) Crystal oscillator operating (crystal frequency: 7.2 MHz)		0.3		mA
	I _{DD} 3	V _{DD}	PLL block stopped. Crystal oscillator stopped.			10	μΑ


Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.


Package Dimensions

unit : mm


SOIC24W / MFP24SJ (300 mil) CASE 751DB ISSUE O



Pin Assignment

Block Diagram

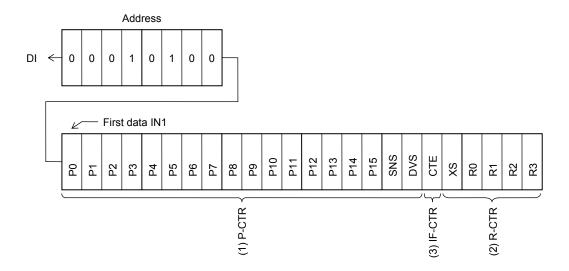
Pin Descriptions

Pin name	Pin No.	Туре	Function	Equivalent circuit
XIN XOUT	1 24	X'tal OSC	Crystal oscillator element connections (4.5 or 7.2 MHz)	
FMIN	17	Local oscillator signal input	 FMIN is selected when DVS in the serial data is set to 1. Input frequency: 10 to 160MHz The signal is passed through an internal divide-by-two prescaler and then input to the swallow counter. The divisor can be set to a value in the range 272 to 65535. Since the internal divide-by-two prescaler is used, the actual divisor will be twice the set value. 	
AMIN	16	Local oscillator signal input	AMIN is selected when DVS in the serial data is set to 0. When SNS in the serial data is set to 1: Input frequency: 2 to 40MHz The signal is input to the swallow counter directly. The divisor can be set to a value in the range 272 to 65535. The set value becomes the actual divisor. When SNS in the serial data is set to 0: Input frequency: 0.5 to 10MHz The signal is input to a 12-bit programmable divider directly. The divisor can be set to a value in the range 4 to 4095. The set value becomes the actual divisor.	
CE	3	Chip enable	This pin must be set high to enable serial data input (DI) or serial data output (DO).	<u> </u>
DI	4	Input data	Input for serial data transferred from the controller	□——§>>
CL	5	Clock	Clock used for data synchronization for serial data input (DI) and serial data output (DO).	<u> </u>
DO	6	Output data	Output for serial data transmitted to the controller. The content of the data transmitted is determined by DOC0 through DOC2.	
V _{DD}	18	Power supply	LC72121MA power supply (V _{DD} 2.7 to 3.6V) The power on reset circuit operates when power is first applied.	-
V _{SSX}	2	Ground	Ground for the crystal oscillator circuit	-
V _{SSd}	15	Ground	Ground for the LC72121MA digital systems other than those that use VSSa or VSSX.	-
BO1 BO2 BO3 BO4	7 8 9 10	Output port	Output-only ports The output state is determined by BO1 through BO4 in the serial data. When the data value is 0: The output state will be the open circuit state. When the data value is 1: The output state will be a low level. A time base signal (8Hz) is output from BO1 when TBC in the serial	——————————————————————————————————————
IO1 IO2	11 14	I/O port	 data is set to 1. Shared function I/O ports The pin function is determined by IOC1 and IOC2 in the serial data. When the data value 0: Input port When the data value 1: Output port When specified to function as an input port: The input pin state is reported to the controller through the DO pin. When the input state is low: The data will be 0: When the input state is high: The data will be 1: When specified to function as an output port: The output state is determined by IO1 and IO2 in the serial data. When the data value is 0: The output state will be the open circuit state. When the data value is 1: The output state will be a low level. These pins are set to input mode after a power on reset. 	

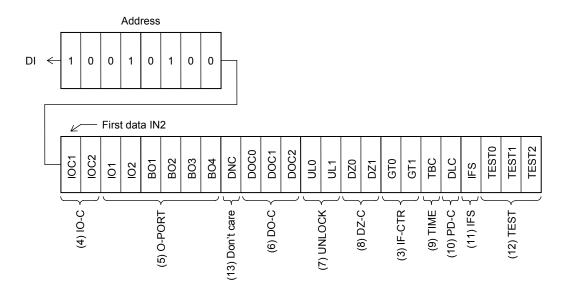
Continued on next page.

Continued from preceding page.

Pin name	Pin No.	Туре	Function	Equivalent circuit
PD	19	Charge pump output	PLL charge pump output A high level is output when the frequency of the local oscillator signal divided by N is higher than the reference frequency, and a low level is output when that frequency is lower. This pin goes to the highimpedance state when the frequencies match.	
AIN AOUT	20 21	Low-pass filter amplifier transistor	Connections for the MOS transistor used for the PLL active low-pass filter.	
V _{SSa}	22	Ground	Ground for the low-pass filter MOS transistor	
IFIN	13	IF counter	 The input frequency range is 0.4 to 15MHz The signal is passed directly to the IF counter. The result is output, MSB first, through the DO pin. Four measurement periods are supported: 4, 8, 32, and 64ms. 	
NC	12 23	NC pin	No connection	-


Procedures for Input and Output of Serial Data

This product uses the CCB (Computer Control Bus), which is Ours audio product serial bus format, for data input and output. This product adopts an 8-bit address CCB format.


	110				Add	ress				
	I/O mode	В0	B1	B2	В3	A0	A1	A2	A3	Function
[1]	IN1(82)	0	0	0	1	0	1	0	0	 Control data input (serial data input) mode 24 bits of data are input. See the "DI Control Data (serial data input)" section for details on the content of the input data.
[2]	IN2(92)	1	0	0	1	0	1	0	0	Control data input (serial data input) mode 14 bits of data are input. See the "DI Control Data (serial data input)" section for details on the content of the input data.
[3]	OUT(A2)	0	1	0	1	0	1	0	0	Data output (serial data output) mode The number of bits output is equal to the number of clock cycles. See the "DO output Data (serial data output)" section for details on the content of the output data.
CE	(1) (2)						`			I/O mode determined
DI	X	В0	В	1 \	B2	∦ в	3 \	A0	\ A1	√ First data IN1/2
DO	{ (1)		CL:No		-					First data OUT First data OUT

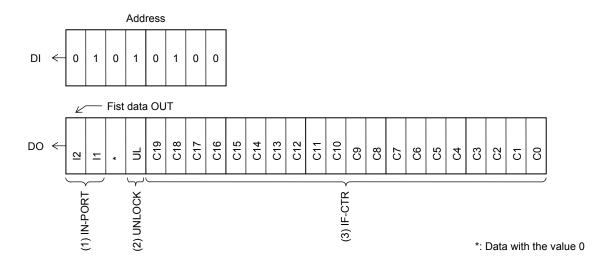
Structure of the DI Control Data (serial data input)

[1] IN1 mode

[2] IN2 mode

Control Data

Contro		I							
No.	Control block/data					Fun	ction		Related data
		-				mmable divid			
		This is a	binary va	alue in w	hich P15	is the MSB.		nding on DVS and SNS.	
		B) (0	0110				(* : don't	care)	
		DVS	SNS	LSB		divisior (N)	Actual divisior		
		1	*	P0		2 to 65535	Twice the set value		
	Programmable	0	1	P0		2 to 65535	The set value		
	divider data	0	0	P4	•	to 4095	The set value		
(1)						P3 are ignored		- ANAINI)	
	P0 to P15	• These pir			ai input	to the program	mmable divider (FMIN or	r Aiviin) and switch the	
	DVS, SNS	input nec	lucitoy re	inge.			(* :	: don't care)	
		DVS	SNS	Inpu	nin	Frequency	range accepted by the		
		1	*	FM	-		10 to 160MHz		
			1	AM			2 to 40MHz		
		0	0	AM			0.5 to 10MHz		
		* See the "	Structure	of the F	rogramr	mable Divider	" section for details.		
		Reference							
		R3	R2	R1	R0		Reference frequency		
		0	0	0	0		100 kHz		
		0	0	0	1		50		
		0	0	1	0		25		
		0	0	1	1		25		
		0	1	0	0		12.5		
		0	1	0	1		6.25		
		0	1	1	0		3.125		
		0 1 1 1 1 0 0 0 1 0 0 1				3.125 10			
	Reference divider								
	data		0	1	0		9 5		
(2)						1			
	R0 to R3	1							
	XS	1	1	0	1		15		
		1	1	1	0	* PL	L INHIBIT+X'tal OSC ST	ГОР	
		1	1	1	1		* PLL INHIBIT		
		* PLL INHI	BIT mod	e					
		In this mo	ode, the	program	mable di	ivider and the	IF counter block are sto	opped, the FMIN, AMIN,	
		and IFIN	pins are	pulled d	own to g	ground, and th	ne charge pump output o	goes to the high-	
		impedano	ce state.						
		Crystal os	scillator e	element	selection	n data			
		XS = 0:							
		XS = 1:							
						r a power on	reset.		
		IF counte CTE = 1				imand data			
		CTE = 1							
	IF counter control	IF counte							
	data	GT1	GT0		suremer	nt time	Wait time]	
(3)		0	0		4 ms		3 to 4 ms	-	IFS
	CTE		1		8	•	3 to 4		
	GT0, GT1	1	0		32		7 to 8		
		1	1		64		7 to 8		
		* See the "	Structure	of the I	F Counte	er" section for	details.		
	I/O port satura data	Specifies	input or	output fo	or the sh	ared function	I/O pins (IO1 and IO2).		
(4)	I/O port setup data IOC1,IOC2	Data = 0): Input p	ort					
	1001,1002	Data = 1							
	Output port data			utput sta	te of the	BO1 through	BO4, IO1, and IO2 outp	out ports.	
(5)	BO1 to BO4	Data = 0	•						IOC1
` '	IO1,IO2	Data = 1				.i 4 - 0 -			IOC2
		• rne data	is reset	υ, sett	ing the p	ons to the ope	en state, after a power o		utinued on next nage

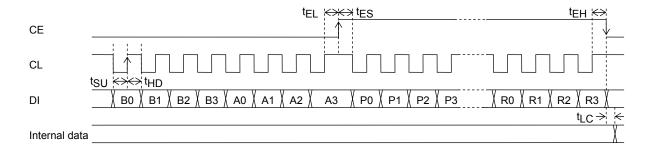

Continued on next page.

Continued from preceding page.

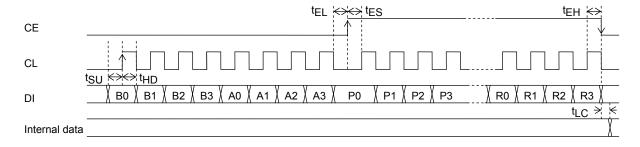
No.	d from preceding page. Control block/data					Fund	etion			Related data						
		Deterr	mines t	the DO p	in output.											
		DC)C2	DOC1	DOC0	DC) pin state									
		(0	0	0		Open	1								
			0	0	1	Low when t	ne PLL is unlocked									
		(0	1	0	eı	nd-UC *1									
			0	1	1		Open	4								
			1	0	0	-	Open									
			1	0	1		11 pin state *2									
			1	1	0	ine ic	pin state *2									
		The one	n etat	o is solor	eted after a	power on reset.	Open									
						ent end check										
	DO pin control data															
		DO pin														
(6)	DOC0															
	DOC1	(1) Count start (2) Count end CE:high														
	DOC2				()		. ,		•	IOC2						
		(1)Whe	n end-l	UC is sel	ected and a	in IF count is sta	arted (by switching CTE	from 0 to 1), the DO pin							
					o the open											
							oletes, the DO pin goes	to the low le	evel, allowing							
						letion of the cou	•									
			-		•	ate by periorini	ng a serial data input o	output opei	ration (when							
			the CE pin is set high). *2. The DO pin will go to the open state if the corresponding IO pin is set up to be an output port.													
			Note) During the data input period (the period that CE is high in IN1 or IN2 mode), the DO pin goes													
		to the open state regardless of the DO pin control data (DOC0 to DOC2). During the data														
		О	utput p	period (th	e period tha	at CE is high in (OUT mode) the DO pin	state reflect	s the internal							
		D	O seri	al data ir	synchroniz	ation with the C	L clock, regardless of t	he DO pin c	ontrol data							
		1)	OOC0	to DOC2).											
		Select	ts the v	width of tl	he phase er	ror (φE) detecte	d for PLL lock state dis	crimination.	The state is							
							of the detection width of		7							
	Unlocked state	UL	.1 L	JL0	φE detec	tion width	Detection out	put	ļ	DOC0						
(7)	detection data	0		0		сор	Open			DOC1						
	ULO, UL1	0		1		0	φE is output dir	-		DOC2						
	020, 021	1 1		0		55μs 11μs	φE is extended by ↑	1 10 21115								
			the PL			•	and UL in the serial da	ta output is s	J set to 0.							
					omparator o											
			DZ1	DZ0	T	ad zone mode										
	Phase comparator		0	0		DZA										
(8)	control data		0	1		DZB										
	D70 D71		1	0		DZC										
	DZ0, DZ1		1	1		DZD										
		Dead zo	one wid	dth: DZA	< DZB < D	ZC < DZD										
(9)	Clock time base		<u> </u>				ne base signal with a 4	0% duty to b	e output from	BO1						
1-7	TBC			`		be ignored.)										
					charge pum	`										
	Charge pump	DL			oump outpu	1										
(10)	control data	0			operation											
(10)		* If the (ed Low	\/(CO	oltaga (\/tima\ b=i== 0	and the MOO	hoine							
	DLC						oltage (Vtune) being 0 a sed state by setting the		•							
					-	eadlock clear c		onarye pull	ip output to							
	IF counter control						0 sets the circuit to re	duced input	sensitivity							
(11)	data			_		-	ut 10 to 30mV rms.		-9							
. ,	IFS				-	ection for detail										
		• Test d														
	Toot dot-	TE	ESTO-	٦												
(12)	Test data TEST0 to 2	TE	EST1	All the	se bits mus	t be set to 0.										
	15010102	TE	ST2-	J												
		All these	e bits a	are set to	0 after a po	ower on reset.										
(13)	DNC	L Thin h	it muct	t be set to	0.0					1						

Structure of the DO Output Data (serial data output)

[3] OUT mode

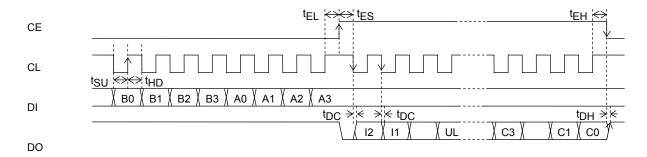


Control Data Functions

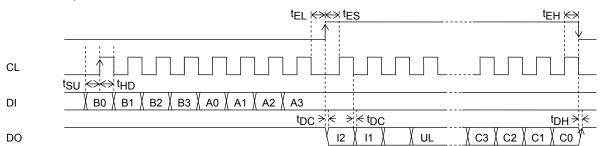

	oi Data i dilotioli		
No.	Control block/data	Function	Related data
(1)	I/O port data	 Data latched from the I/O port OI or O2 pin states. These bits reflect the pin states regardless of the I/O port mode (input or output). The data is latched at the point the circuit enters data output mode (OUT mode). I1 ← The OI pin state High : 1 I2 ← The O2 pin state Low : 0 	IOC1 IOC2
(2)	PLL unlocked state data UL	 Indicates the state of the unlocked state detection circuit. UL ← 0: When the PLL is unlocked. UL ← 1: When the PLL is locked or in the detection disabled mode. 	UL0 UL1
(3)	IF counter binary counter C19 to C0	 Indicates the value of the IF counter (20-bit binary counter). C19 ← MSB of the binary counter C0 ← LSB of the binary counter 	CTE GT0 GT1

1. Serial Data Input (IN1/IN2) tSU, tHD, tES, tEH, \geq 0.75 μ s tLC < 0.75 μ s

(1) CL: Normally high

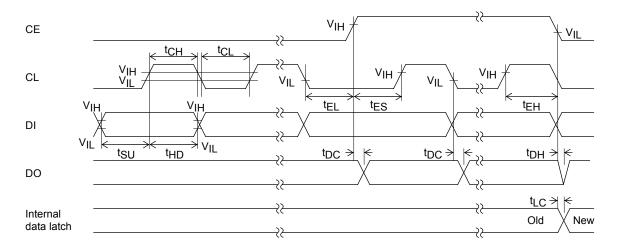


(2) CL: Normally low

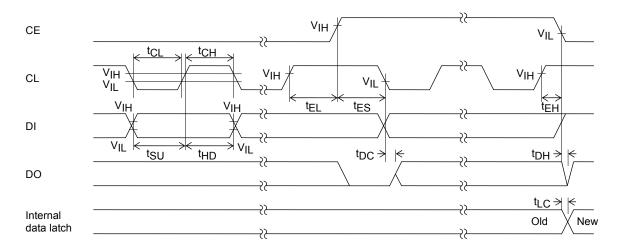


2.Serial Data Output (Out) tsu, thp, tel, tes, teh, \geq 0.75 μs tpc, tpH < 0.35 μs

(1) CL: Normally high

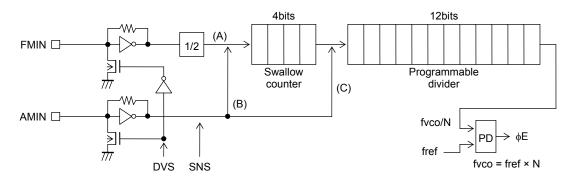


(2) CL: Normally low



Note: The data conversion times (tDC and tDH) depend on the value of the pull-up resistor and the printed circuit board capacitance since the DO pin is an n-channel open-drain circuit.

Serial Data Timing



When CL is Stopped at the Low Level

When CL is Stopped at the High Level

Structure of the Programmable Divider

	DVS	SNS	Input pin	Set divisor	Actual divisor	Input frequency range
(A)	1	*	FMIN	272 to 65535	Twice the set value	10 to 160MHz
(B)	0	1	AMIN	272 to 65535	The set value	2 to 40MHz
(C)	0	0	AMIN	4 to 4095	The set value	0.5 to 10MHz

^{*:} Don't care

Sample Programmable Divider Divisor Calculations

(1) For FM with a step size of 50kHz (DVS = 1, SNS = *: FMIN selected)

FM RF = 90.0MHz (IF + 10.7MHz)

FM VCO = 100.7MHz

PLL fref = 25kHz (R0 to R1 = 1, R2 to R3 = 0)

100.7MHz (FM VCO) \div 25kHz (fref) \div 2 (for the FMIN 1/2 prescaler) = 2014 \rightarrow 07DE (hexadecimal)

_	E D					_	7 0																
0	1	1	1	1	0	1	1	1	1	1	0	0	0	0	0	*	1			1	1	0	0
P0	P1	P2	Р3	P 4	P5	P6	2d	8d	6d	P10	P11	P12	P13	P14	P15	SNS	SAQ	CTE	XS	R0	R1	R2	R3

(2) For SW with a step size of 5kHz (DVS = 0, SNS = 1: AMIN high-speed operation selected)

SW RF = 21.75 MHz (IF +450kHz)

SW VCO = 22.20MHz

PLL fref = 5kHz (R0 = R2 = 0, R1 = R3 = 1)

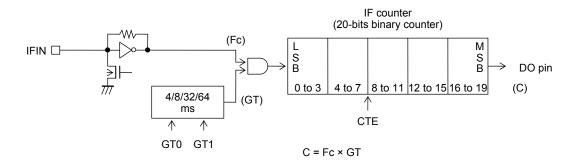
22.2MHz (SW VCO) \div 5kHz (fref) = 4440 \rightarrow 1158 (hexadecimal)

_	8 5					_	1 1																
0	0	0	1	1	0	1	0	1	0	0	0	1	0	0	0	1	0			0	1	0	1
P0	P1	P2	Р3	P4	P5	P6	P7	P8	Ь9	P10	P11	P12	P13	P14	P15	SNS	DVS	CTE	XS	R0	R1	R2	R3

(3) For MW with a step size of 9kHz (DVS = 0, SNS = 0: AMIN low-speed operation selected)

MW RF = 1008kHz (IF + 450kHz)

WM VCO = 1458kHz


PLL fref = 9kHz (R0 = R3 = 1, R1 = R2 = 0)

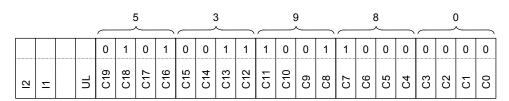
1458 (MW VCO) \div 9kHz (fref) = 162 \rightarrow 0A2 (hexadecimal)

						2	_			A					_								
*	*	*	*	0	1	0	0	0	1	0	1	0	0	0	0	0	0			1	0	0	1
Po	P1	P2	P3	P 4	P5	P6	P7	P8	P9	P10	P11	P12	P13	P14	P15	SNS	DVS	CTE	XS	RO	Б	R2	R3

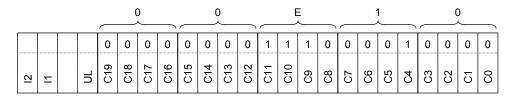
Structure of the IF Counter

The LC72121MA IF counter is a 20-bit binary counter, and takes the IF signal from the IFIN pin as its input. The result of the count can be read out serially, MSB first, from the DO pin.

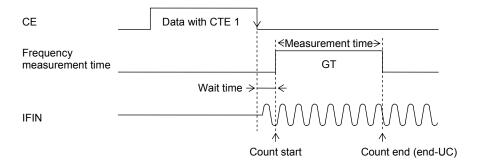
074	OTO	Measurement time						
GT1	GT0	Measurement time (GT)	Wait time (t _{WU})					
0	0	4 ms	3 to 4 ms					
0	1	8	3 to 4					
1	0	32	7 to 8					
1	1	64	7 to 8					


The IF frequency (Fc) is measured by determining how many pulses were input to the IF counter in the stipulated measurement time, GT.

$$Fc = \frac{C}{GT}$$
 (C=Fc × GT) C: Counted value (the number of pulses)


IF Counter Frequency Measurement Examples

(1) When the measurement time (GT) is 32ms and the counted value (C) is 53980 (hexadecimal) or 342,400 (decimal).


IF frequency (Fc) = $342400 \div 32$ ms = 10.7MHz

(2) When the measurement time (GT) is 8ms and the counted value (C) is E10 (hexadecimal) or 3600 (decimal). IF frequency (FC) = $3600 \div 8ms = 450kHz$

IF Counter Operation

Applications must first, before starting an IF count operation reset the IF counter by setting CTE in the serial data to 0. The IF counter operation is started setting CTE in the serial data from 0 to 1. Although the serial data is latched by dropping the CE pin from high to low, the IF signal input to the IFIN pin must be provided within the wait time from the point CE goes low. Next, the readout of the IF counter after measurement is complete must be performed while CTE is still 1, since the counter will be reset if CTE is set to 0.

Note: If IF counting is used, applications must determine whether or not the IF IC SD (station detect) signal is present in the microcontroller software, and perform the IF count only if that signal is asserted. This is because autosearch techniques that use IF counting only are subject to incorrect stopping at points where there is no station due to IF buffer leakage.

Note that the LC72121MA input sensitivity can be controlled with the IFS bit in the serial data. Reduced sensitivity mode (IFS = 0) must be selected when this IC is used in conjunction with an IF IC that does not provide an SD output and auto-search is implemented using only IF counting.

IFIN Minimum Sensitivity Standard

Note: Values in parentheses are actual performance values that are provided for reference purposes.

Unlocked State Detection

1. Unlocked state detection timing

Unlocked state detection is performed during the reference frequency (fref) period (interval). This means that a period at least as long as the period of the reference frequency is required to recognize the locked/unlocked state. However, applications must wait at least twice the period of the reference frequency immediately after changing the divisor (N) before checking the locked/unlocked state.

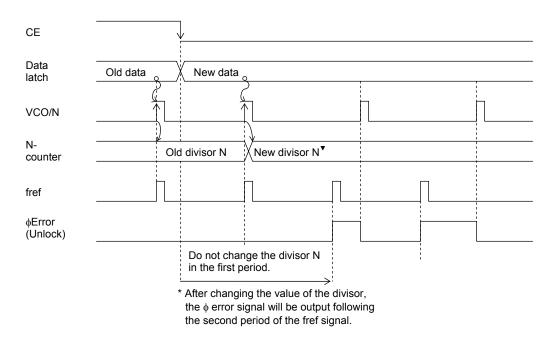


Figure 1 Unlocked State Detection Timing

For example, if fref is 1kHz (a period of 1ms) applications must wait at least 2 ms after the divisor N is changed before performing a locked/unlocked check.

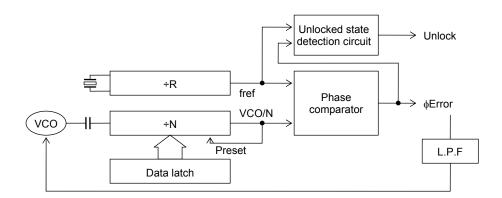


Figure 2 Circuit Structure

2. Combining with Software

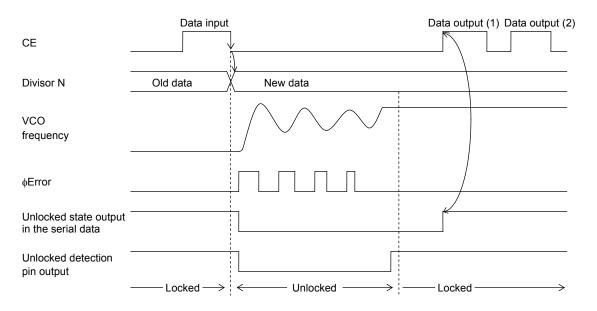
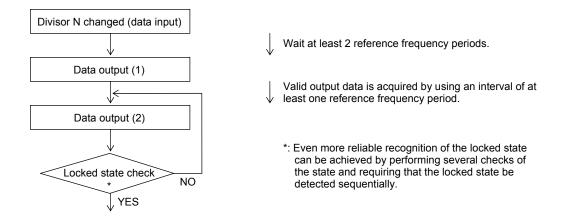
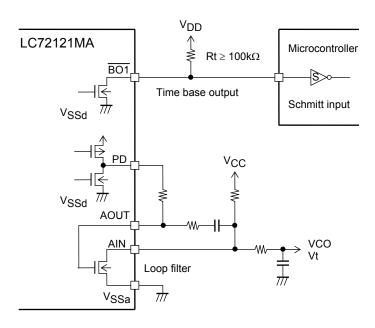



Figure 3 Combining with Software

3. Outputting the unlocked state data in the serial data

At the point of data output 1 in figure 3, the unlocked state data will indicate the unlocked state, since the VCO frequency is not stable (locked) yet. In cases such as this, the application should wait at least one whole period and then check again whether or not the frequency has stabilized with the data output 2 operation in the figure. Applications can implement even more reliable recognition of the locked state by performing several more checks of the state and requiring that the locked state be detected sequentially.

<Flowchart for Lock Detection>



4. Directly outputting the unlocked state to the DO pin

Since the unlocked state (high level when locked, low when unlocked) is output from the DO pin, applications can check for the locked state by waiting at least two reference frequency periods after changing the divisor N. However, in this case also, even more reliable recognition of the locked state can be achieved by performing several checks of the state and requiring that the locked state be detected sequentially.

Clock Time Base Usage Notes

When using the clock time base output function, the output pin (\overline{BOI}) pull-up resistor must have a value of over $100k\Omega$. The use of a Schmitt input in the microcontroller that accepts this signal is recommended to reduce chattering. This is to prevent degradation of the VCO C/N characteristics when combining with a loop filter that uses the internal transistor provided to form a low-pass filter. Although the ground for the clock time base output pin (V_{SSd}) and the ground for the transistor (V_{SSa}) are isolated internally on the chip, applications must take care to avoid ground loops and minimize current fluctuations in the time base pin to prevent degradation of the low-pass filter characteristics.

Other Items

(1) Notes on the phase comparator dead zone

DZ1	DZ0	Dead zone mode	Charge pump	Dead zone		
0	0	DZA	ON/ON	0s		
0	1	DZB	ON/ON	-0s		
1	0	DZC	OFF/OFF	+0s		
1	1	DZD	OFF/OFF	++0s		

When the charge pump is used with one of the ON/ON modes, correction pulses are generated from the charge pump even if the PLL is locked. As a result, it is easy for the loop to become unstable, and special care is required in application design. The following problems can occur if an ON/ON mode is used.

- (1) Sidebands may be created by reference frequency leakage.
- (2) Sidebands may be created by low-frequency leakage due to the correction pulse envelope.

Although the loop is more stable when a dead zone is present (i.e. when an OFF/OFF mode is used), a dead zone makes it more difficult to achieve excellent C/N characteristics. On the other hand, while it is easy to achieve good C/N characteristics when there is no dead zone, achieving good loop stability is difficult. Accordingly, the DZA and DZB settings, in which there is no dead zone, can be effective in situations where a signal-to-noise ratio of 90 to 100dB or higher is required in FM reception, or where it is desirable to increase the pilot margin in AM stereo reception.

However, if such a high signal-to-noise ratio is not required for FM reception, if an adequate pilot margin can be acquired in AM stereo reception, or if AM stereo is not required, then either DZC or DZD, in which there is a dead zone, should be chosen.

Dead Zone

As shown in figure 1, the phase comparator compares a reference frequency (fr) with fp. As shown in figure 2, the phase comparator's characteristics consist of an output voltage (V) that is proportional to the phase difference ϕ . However, due to internal circuit delay and other factors, an actual circuit has a region (the dead zone, B) where the circuit cannot actually compare the phases. To implement a receiver with a high S/N ratio, it is desirable that this region be as small as possible. However, it is often desirable to have the dead zone be slightly wider in popularly-priced models. This is because in certain cases, such as when there is a strong RF input, popularly-priced models can suffer from mixer to VCO RF leakage that modulates the VCO. When the dead zone is small, the circuit outputs signals to correct this modulation and this output further modulates the VCO. This further modulation may then generate beats and the RF signal.

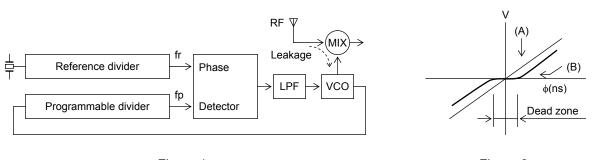


Figure 1 Figure 2

(2) Notes on the FMIN, AMIN, and IFIN pins

Coupling capacitors should be placed as close to their pin as possible. A capacitance of about 100pF is desirable for these capacitors. In particular, if the IFIN pin coupling capacitor is not held under 1000pF, the time to reach the bias level may become excessive and incorrect counts may result due to the relationship with the wait time.

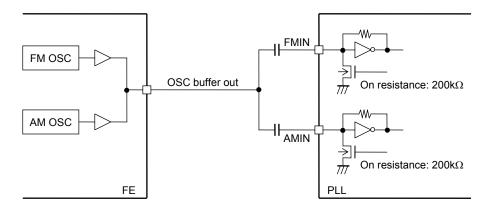
(3) Notes on IF counting → Use the SD signal in conjunction with IF counting
When counting the IF frequency, the microcontroller must determine the presence or absence of the IF IC SD
(station detect) signal and turn on the IF counter buffer output and execute the IF count only if there is an SD signal.

(station detect) signal and turn on the IF counter buffer output and execute the IF count only if there is an SD sign Autosearch techniques that only use the IF counter are subject to incorrect stopping at points where there is no station due to IF buffer leakage.

(4) DO pin usage

The DO pin can be used for IF counter count completion checking and as an unlock detection output in addition to its use in data output mode. It is also possible to have the DO pin reflect the state of an input pin to input that state to the microcontroller.

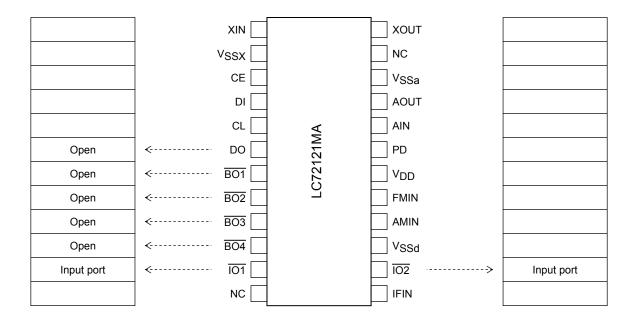
(5) Power supply pins

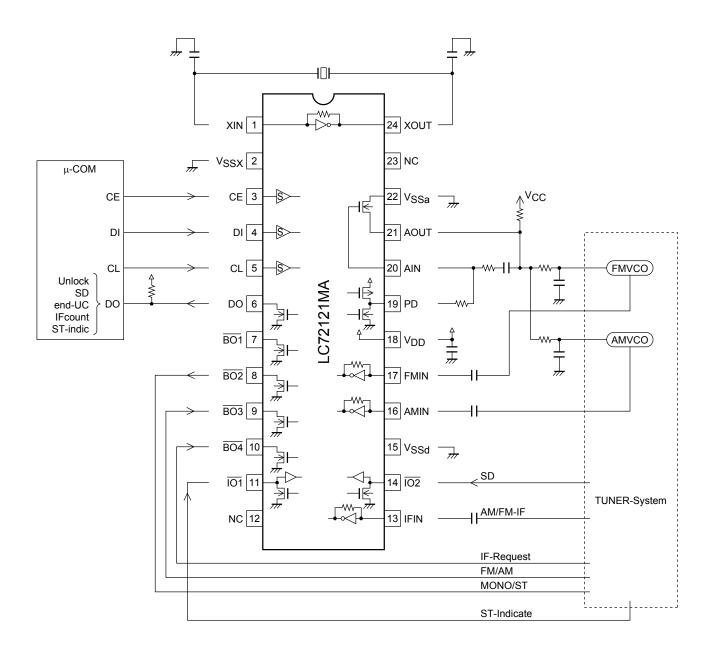

Capacitors must be inserted between the power supply V_{DD} and V_{SS} pins for noise exclusion. These capacitors must be placed as close as possible to the V_{DD} and V_{SS} pins.

(6) VCO setup

Applications must be designed so that the VCO (local oscillator) does not stop, even if the control voltage (Vtune) goes to 0V. If it is possible for the oscillator to stop, the application must use the control data (DLC) to temporarily force Vtune to V_{CC} to prevent deadlock from occurring. (Deadlock clear circuit)

(7) Front end connection example


Since this product is designed with the relatively high resistance of $200k\Omega$ for the pulldown (on) resistors built in to the FMIN and AMIN pins, a common AM/FM local oscillator buffer can be used as shown in the following circuit.


(8) PD pin

Note that the charge pump output voltage is reduced when this IC, which is a 3-V system, is used to replace the LC72131K/KMA, which is a 5-V system. This means that since the loop gain is reduced, the loop filter constants, the lock time (SD wait time), and other related parameters must be reevaluated in the end product design.

Pin States after a Power on Reset

Sample Applications Circuit

ORDERING INFORMATION

Device	Package	Shipping (Qty / Packing)			
LC72121MA-AH	SOIC24W / MFP24SJ (300 mil) (Pb-Free / Halogen Free)	2000 / Tape & Reel			

[†] For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. http://www.onsemi.com/pub_link/Collateral/BRD8011-D.PDF

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officer