J309, J310

Preferred Device

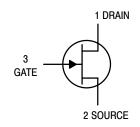
JFET VHF/UHF Amplifiers

N-Channel — Depletion

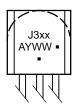
Features

• Pb-Free Packages are Available*

MAXIMUM RATINGS


Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DS}	25	Vdc
Gate-Source Voltage	V _{GS}	25	Vdc
Forward Gate Current	I _{GF}	10	mAdc
Total Device Dissipation @ T _A = 25°C Derate above = 25°C	P _D	350 2.8	mW mW/°C
Junction Temperature Range	TJ	-65 to +125	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.


ON Semiconductor®

http://onsemi.com

MARKING DIAGRAM

J3xx = Device Code

xx = 09 or 10

A = Assembly Location

Y = Year

WW = Work Week

= Pb-Free Package(Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 3 of this data sheet.

Preferred devices are recommended choices for future use and best overall value.

^{*}For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

J309, J310

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted)

Characteristic		Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS	I		<u> </u>			
Gate – Source Breakdown Voltage ($I_G = -1.0 \mu Adc, V_{DS} = 0$)		V _{(BR)GSS}	-25	_	_	Vdc
Gate Reverse Current $(V_{GS} = -15 \text{ Vdc}, V_{DS} = 0, T_A = 25^{\circ}\text{C})$ $(V_{GS} = -15 \text{ Vdc}, V_{DS} = 0, T_A = +125^{\circ}\text{C})$		I _{GSS}	_ _	_ _	-1.0 -1.0	nAdc μAdc
Gate Source Cutoff Voltage (V _{DS} = 10 Vdc, I _D = 1.0 nAdc)	J309 J310	V _{GS(off)}	-1.0 -2.0	- -	-4.0 -6.5	Vdc
ON CHARACTERISTICS						
Zero-Gate-Voltage Drain Current ⁽¹⁾ (V _{DS} = 10 Vdc, V _{GS} = 0)	J309 J310	I _{DSS}	12 24	_ _	30 60	mAdc
Gate-Source Forward Voltage (V _{DS} = 0, I _G = 1.0 mAdc)		$V_{GS(f)}$	_	-	1.0	Vdc
SMALL-SIGNAL CHARACTERISTICS	•		•	•	•	•
Common–Source Input Conductance (V _{DS} = 10 Vdc, I _D = 10 mAdc, f = 100 MHz)	J309 J310	Re(y _{is})	_ _	0.7 0.5	- -	mmhos
Common–Source Output Conductance (V _{DS} = 10 Vdc, I _D = 10 mAdc, f = 100 MHz)		Re(y _{os})	_	0.25	-	mmhos
Common–Gate Power Gain (V _{DS} = 10 Vdc, I _D = 10 mAdc, f = 100 MHz)		G _{pg}	_	16	-	dB
Common–Source Forward Transconductance (V _{DS} = 10 Vdc, I _D = 10 mAdc, f = 100 MHz)		Re(y _{fs})	_	12	_	mmhos
Common–Gate Input Conductance (V _{DS} = 10 Vdc, I _D = 10 mAdc, f = 100 MHz)		Re(y _{ig})	_	12	_	mmhos
Common–Source Forward Transconductance ($V_{DS} = 10 \text{ Vdc}, I_D = 10 \text{ mAdc}, f = 1.0 \text{ kHz}$)	J309 J310	9fs	10000 8000	- -	20000 18000	μmhos
Common–Source Output Conductance ($V_{DS} = 10 \text{ Vdc}$, $I_D = 10 \text{ mAdc}$, $f = 1.0 \text{ kHz}$)		9 _{os}	_	_	250	μmhos
Common–Gate Forward Transconductance $(V_{DS} = 10 \text{ Vdc}, I_D = 10 \text{ mAdc}, f = 1.0 \text{ kHz})$	J309 J310	9 _{fg}	_ _	13000 12000	- -	μmhos
Common–Gate Output Conductance $(V_{DS} = 10 \text{ Vdc}, I_D = 10 \text{ mAdc}, f = 1.0 \text{ kHz})$	J309 J310	9og	- -	100 150	_ _	μmhos
Gate-Drain Capacitance $(V_{DS} = 0, V_{GS} = -10 \text{ Vdc}, f = 1.0 \text{ MHz})$		C_{gd}	_	1.8	2.5	pF
Gate–Source Capacitance $(V_{DS} = 0, V_{GS} = -10 \text{ Vdc}, f = 1.0 \text{ MHz})$		C _{gs}	_	4.3	5.0	pF
FUNCTIONAL CHARACTERISTICS	<u>'</u>					
Equivalent Short–Circuit Input Noise Voltage (V _{DS} = 10 Vdc, I _D = 10 mAdc, f = 100 Hz)		e _n	_	10	_	nV/√ Hz

^{1.} Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 3.0%.

ORDERING INFORMATION

Device	Package	Shipping [†]		
J309	TO-92			
J309G	TO-92 (Pb-Free)	1000 Units / Bulk		
J310	TO-92			
J310G	TO-92 (Pb-Free)	1000 Units / Bulk		
J310RLRP	TO-92			
J310RLRPG	TO-92 (Pb-Free)	2000 Units / Tape & Ammo Box		
J310ZL1	TO-92			
J310ZL1G	TO-92 (Pb-Free)	2000 Units / Tape & Ammo Box		

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

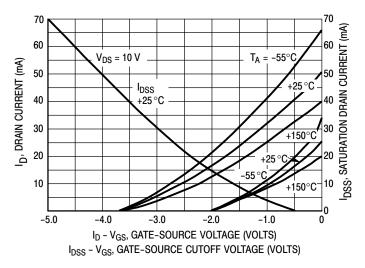


Figure 1. Drain Current and Transfer Characteristics versus Gate-Source Voltage

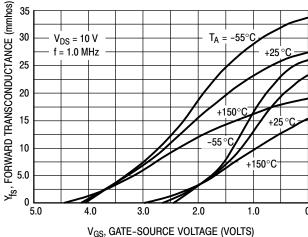


Figure 2. Forward Transconductance versus Gate-Source Voltage

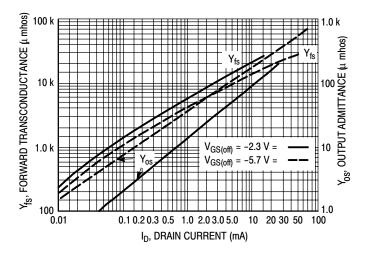


Figure 3. Common–Source Output
Admittance and Forward Transconductance
versus Drain Current

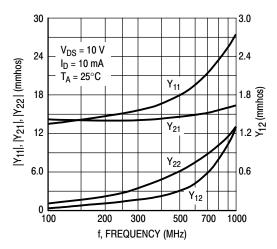


Figure 5. Common-Gate Y Parameter Magnitude versus Frequency

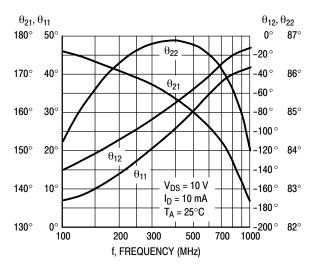


Figure 7. Common-Gate Y Parameter Phase-Angle versus Frequency

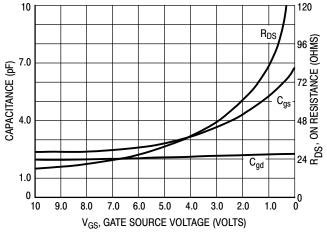


Figure 4. On Resistance and Junction Capacitance versus Gate-Source Voltage

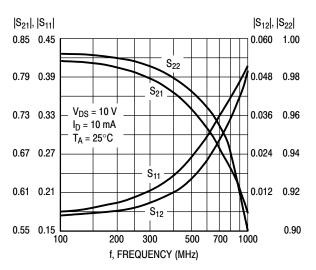
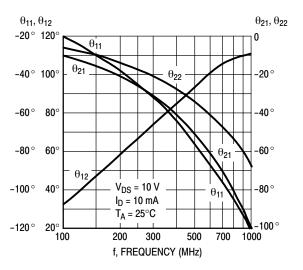
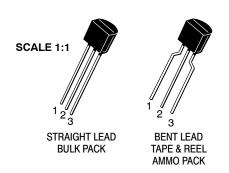
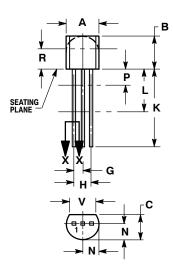


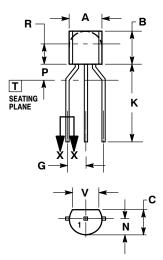
Figure 6. Common-Gate S Parameter Magnitude versus Frequency


Figure 8. S Parameter Phase–Angle versus Frequency

TO-92 (TO-226) CASE 29-11 **ISSUE AM**

DATE 09 MAR 2007



STRAIGHT LEAD **BULK PACK**

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI
- Y14.5M, 1982.
 CONTROLLING DIMENSION: INCH.
 CONTOUR OF PACKAGE BEYOND DIMENSION R
 IS UNCONTROLLED.
- LEAD DIMENSION IS UNCONTROLLED IN P AND BEYOND DIMENSION K MINIMUM.

	INC	HES	MILLIN	ETERS		
DIM	MIN MAX		MIN	MAX		
Α	0.175	0.205	4.45	5.20		
В	0.170	0.210	4.32	5.33		
С	0.125	0.165	3.18	4.19		
D	0.016	0.021	0.407	0.533		
G	0.045	0.055	1.15	1.39		
Н	0.095	0.105	2.42	2.66		
J	0.015	0.020	0.39	0.50		
K	0.500		12.70			
L	0.250		6.35			
N	0.080	0.105	2.04	2.66		
Р		0.100		2.54		
R	0.115		2.93			
٧	0.135		3.43			

BENT LEAD TAPE & REEL AMMO PACK

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER

- AND BEYOND DIMENSION K MINIMUM.

	MILLIMETERS						
DIM	MIN	MAX					
Α	4.45	5.20					
В	4.32	5.33					
С	3.18	4.19					
D	0.40	0.54					
G	2.40	2.80					
J	0.39	0.50					
K	12.70						
N	2.04 2.6						
P	1.50	4.00					
R	2.93						
٧	3.43						

STYLES ON PAGE 2

DOCUMENT NUMBER:	98ASB42022B	Electronic versions are uncontrolled except when accessed directly from the Document Reported versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	TO-92 (TO-226)		PAGE 1 OF 2		

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves onsem and of 15GTI in are trademarks of Semiconductor Components industries, LLC due onsem or its substitutines in the Office States and/or other countries. Onsem reserves the right to make changes without further notice to any products herein. onsem makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

TO-92 (TO-226) CASE 29-11 ISSUE AM

DATE 09 MAR 2007

STYLE 1: PIN 1. 2. 3.	EMITTER BASE COLLECTOR	STYLE 2: PIN 1. 2. 3.	BASE EMITTER COLLECTOR	STYLE 3: PIN 1. 2. 3.	ANODE ANODE CATHODE	STYLE 4: PIN 1. 2. 3.	CATHODE CATHODE ANODE	STYLE 5: PIN 1. 2. 3.	
PIN 1. 2.	GATE	PIN 1.	SOURCE	PIN 1.	DRAIN	PIN 1.	BASE 1	2.	CATHODE
2.	ANODE CATHODE & ANODE	2.	GATE	2.	ANODE 1 GATE CATHODE 2	2.	EMITTER COLLECTOR BASE	2.	ANODE 1 CATHODE ANODE 2
2.	ANODE GATE	PIN 1. 2.	COLLECTOR	PIN 1.	ANODE CATHODE NOT CONNECTED	PIN 1.	GATE	PIN 1. 2.	NOT CONNECTED CATHODE ANODE
PIN 1. 2.	COLLECTOR EMITTER	PIN 1.	SOURCE GATE	PIN 1. 2.		PIN 1. 2.	EMITTER COLLECTOR/ANODE CATHODE	PIN 1. 2.	MT 1
	Vcc	PIN 1.	MT SUBSTRATE		CATHODE ANODE	PIN 1. 2.	NOT CONNECTED ANODE CATHODE	PIN 1. 2.	DRAIN
PIN 1. 2.	GATE	PIN 1. 2.	BASE COLLECTOR EMITTER	PIN 1. 2.	RETURN INPUT OUTPUT	PIN 1. 2.	INPUT		

DOCUMENT NUMBER:	98ASB42022B	98ASB42022B Electronic versions are uncontrolled except when accessed directly from the Docum Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in re			
DESCRIPTION:	TO-92 (TO-226)		PAGE 2 OF 2		

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales