ON Semiconductor

Is Now

www.onsemi.com
FXLA102
Low-Voltage Dual-Supply 2-Bit Voltage Translator with Configurable Voltage Supplies and Signal Levels, 3-State Outputs, and Auto Direction Sensing

Features
- Bi-Directional Interface between Two Levels: from 1.1 V to 3.6 V
- Fully Configurable: Inputs and Outputs Track \(V_{CC} \) Level
- Non-Preferential Power-Up; Either \(V_{CC} \) May Be Powered Up First
- Outputs Switch to 3-State if Either \(V_{CC} \) is at GND
- Power-Off Protection
- Bus-Hold on Data Inputs Eliminates the Need for Pull-Up Resistors; Do Not Use Pull-Up Resistors on A or B Ports
- Control Input (/OE) Referenced to \(V_{CCA} \) Voltage
- Packaged in MicroPak™ 8 (1.6 mm x 1.6 mm)
- Direction Control Not Necessary
- 100 Mbps Throughput when Translating Between 1.8 V and 2.5 V
- ESD Protection Exceeds:
 - 15 kV HBM (B Port I/O to GND) per JESD22-A114 & Mil Std 883e 3015.7
 - 8 kV HBM (A Port I/O to GND) per JESD22-A114 & Mil Std 883e 3015.7
 - 2 kV CDM (per ESD STM 5.3)

Description
The FXLA102 is a configurable dual-voltage supply translator for both uni-directional and bi-directional voltage translation between two logic levels. The device allows translation between voltages as high as 3.6 V to as low as 1.1 V. The A port tracks the \(V_{CCA} \) level and the B port tracks the \(V_{CCB} \) level. This allows for bi-directional voltage translation over a variety of voltage levels: 1.2 V, 1.5 V, 1.8 V, 2.5 V, and 3.3 V.

The device remains in three-state as long as either \(V_{CC} = 0 \) V, allowing either \(V_{CC} \) to be powered up first. Internal power-down control circuits place the device in 3-state if either \(V_{CC} \) is removed.

The /OE input, when HIGH, disables both the A and B ports by placing them in a 3-state condition. The /OE input is supplied by \(V_{CCA} \).

The FXLA102 supports bi-directional translation without the need for a direction control pin. The two ports of the device have auto-direction sense capability. Either port may sense an input signal and transfer it as an output signal to the other port.

Ordering Information

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Top Mark</th>
<th>Operating Temperature Range</th>
<th>Package</th>
<th>Packing Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>FXLA102L8X</td>
<td>XF</td>
<td>-40 to 85°C</td>
<td>8-Lead MicroPak™ 1.6 mm x 1.6 mm Package</td>
<td>5 K Units Tape and Reel</td>
</tr>
</tbody>
</table>
Pin Configuration

![Pin Configuration Diagram]

Figure 1. Pin Configuration (Top Through View)

Pin Definitions

<table>
<thead>
<tr>
<th>Pin #</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VCCA</td>
<td>A-Side Power Supply</td>
</tr>
<tr>
<td>2</td>
<td>A0</td>
<td>A Side Input or 3-State Output</td>
</tr>
<tr>
<td>3</td>
<td>A1</td>
<td>A Side Input or 3-State Output</td>
</tr>
<tr>
<td>4</td>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>5</td>
<td>/OE</td>
<td>Output Enable Input</td>
</tr>
<tr>
<td>6</td>
<td>B1</td>
<td>B Side Input or 3-State Output</td>
</tr>
<tr>
<td>7</td>
<td>B0</td>
<td>B Side Input or 3-State Output</td>
</tr>
<tr>
<td>8</td>
<td>VCCB</td>
<td>B Side Power Supply</td>
</tr>
</tbody>
</table>
Functional Diagram

Figure 2. Functional Diagram

Function Table

<table>
<thead>
<tr>
<th>Control</th>
<th>Outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>/OE</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>Normal Operation</td>
</tr>
<tr>
<td>H</td>
<td>3-State</td>
</tr>
</tbody>
</table>

H = HIGH Logic Level
L = LOW Logic Level
Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{CC}</td>
<td>Supply Voltage</td>
<td>V_{CCA}</td>
<td>-0.5</td>
<td>4.6</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V_{CCB}</td>
<td>-0.5</td>
<td>4.6</td>
<td>V</td>
</tr>
<tr>
<td>V_{I}</td>
<td>DC Input Voltage</td>
<td>IO Ports A and B</td>
<td>-0.5</td>
<td>4.6</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Control Input (/OE)</td>
<td>-0.5</td>
<td>4.6</td>
<td>V</td>
</tr>
<tr>
<td>V_{O}</td>
<td>Output Voltage^2</td>
<td>Output 3-State</td>
<td>-0.5</td>
<td>4.6</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Output Active (A_{in})</td>
<td>-0.5</td>
<td>V_{CCA} + 0.5</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Output Active (B_{in})</td>
<td>-0.5</td>
<td>V_{CCB} + 0.5</td>
<td>V</td>
</tr>
<tr>
<td>I_{IK}</td>
<td>DC Input Diode Current</td>
<td>V < 0 V</td>
<td>-50</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>I_{OK}</td>
<td>DC Output Diode Current</td>
<td>V_{OC} = 0 V</td>
<td>-50</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>V_{OC} = V_{CC}</td>
<td>+50</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>I_{OH/OL}</td>
<td>DC Output Source/Sink Current</td>
<td>-50</td>
<td>+50</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>I_{CC}</td>
<td>DC V_{CC} or Ground Current (per Supply Pin)</td>
<td>±100</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T_{STG}</td>
<td>Storage Temperature Range</td>
<td>-65</td>
<td>+150</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>P_{D}</td>
<td>Power Dissipation</td>
<td>5</td>
<td>mW</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ESD</td>
<td>Human Body Model, JESD22-A114</td>
<td>B Port I/O to GND</td>
<td>15</td>
<td>kV</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>A Port I/O to GND</td>
<td>8</td>
<td>kV</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Charged Device Model, JESD22-C101</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. I_{O} absolute maximum ratings must be observed.
2. All unused inputs and input/outputs must be held at V_{CCI} or GND.

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. ON Semiconductor does not recommend exceeding them or designing to Absolute Maximum Ratings.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{CC}</td>
<td>Power Supply</td>
<td>Operating V_{CCA} or V_{CCB}</td>
<td>1.1</td>
<td>3.6</td>
<td>V</td>
</tr>
<tr>
<td>V_{IN}</td>
<td>Input Voltage</td>
<td>Ports A and B</td>
<td>0</td>
<td>3.6</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Control Input (/OE)</td>
<td>0</td>
<td>V_{CCA}</td>
<td>V</td>
</tr>
<tr>
<td>I_{OH/OL}</td>
<td>Dynamic Output Current</td>
<td>V_{CC} = 3.0 V to 3.6 V</td>
<td>±12</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>V_{CC} = 2.3 V to 2.7 V</td>
<td>±8</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>V_{CC} = 1.65 V to 1.95 V</td>
<td>±5</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>V_{CC} = 1.40 V to 1.65 V</td>
<td>±3</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>V_{CC} = 1.1 V to 1.4 V</td>
<td>±2</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>I_{S}</td>
<td>Static Output Current</td>
<td>V_{CC} = 1.1 V to 3.6 V</td>
<td>±4</td>
<td>µA</td>
<td></td>
</tr>
<tr>
<td>T_{A}</td>
<td>Operating Temperature, Free Air</td>
<td>-40</td>
<td>+85</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>dt/dV</td>
<td>Maximum Input Edge Rate</td>
<td>V_{CC} = 1.1 to 3.6 V</td>
<td>10</td>
<td>ns/V</td>
<td></td>
</tr>
<tr>
<td>θ_{JA}</td>
<td>Thermal Resistance</td>
<td></td>
<td>280</td>
<td>°C/W</td>
<td></td>
</tr>
</tbody>
</table>
Power-Up/Power-Down Sequence

FXL translators offer an advantage in that either \(V_{CC} \) may be powered up first. This benefit derives from the chip design. When either \(V_{CC} \) is at 0 V, outputs are in a high-impedance state. The control input (/OE) is designed to track the \(V_{CCA} \) supply. A pull-up resistor tying /OE to \(V_{CCA} \) should be used to ensure that bus contention, excessive currents, or oscillations do not occur during power-up or power-down. The size of the pull-up resistor is based upon the current-sinking capability of the device driving the /OE pin.

The recommended power-up sequence is:
1. Apply power to the first \(V_{CC} \).
2. Apply power to the second \(V_{CC} \).
3. Drive the /OE input LOW to enable the device.

The recommended power-down sequence is:
1. Drive /OE input HIGH to disable the device.
2. Remove power from either \(V_{CC} \).
3. Remove power from other \(V_{CC} \).

Pull-Up/Pull-Down Resistors

Do not use pull-up or pull-down resistors. This device has bus-hold circuits: pull-up or pull-down resistors are not recommended because they interfere with the output state. The current through these resistors may exceed the hold drive, \(I_{I(HOLD)} \) and/or \(I_{I(OD)} \) bus-hold currents. The bus-hold feature eliminates the need for extra resistors.
DC Electrical Characteristics

$T_A = 40$ to $85°C$.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>V_{CCA} (V)</th>
<th>V_{CCB} (V)</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{HIA}</td>
<td>High-Level Input Voltage</td>
<td>Data Inputs A_n Control Pin $/OE$</td>
<td>2.70 to 3.60</td>
<td>2.70 to 3.60</td>
<td>2.00</td>
<td>1.60</td>
<td>1.00</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.30 to 2.70</td>
<td>2.30 to 2.70</td>
<td></td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.65 to 2.30</td>
<td>1.65 to 2.30</td>
<td></td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.40 to 1.65</td>
<td>1.40 to 1.65</td>
<td></td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.10 to 1.40</td>
<td>1.10 to 1.40</td>
<td></td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>V_{HIB}</td>
<td>Low-Level Input Voltage</td>
<td>Data Inputs B_n</td>
<td>2.70 to 3.60</td>
<td>2.70 to 3.60</td>
<td>2.00</td>
<td>1.60</td>
<td>1.00</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.30 to 2.70</td>
<td>2.30 to 2.70</td>
<td></td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.65 to 2.30</td>
<td>1.65 to 2.30</td>
<td></td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.40 to 1.65</td>
<td>1.40 to 1.65</td>
<td></td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.10 to 1.40</td>
<td>1.10 to 1.40</td>
<td></td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>V_{ILA}</td>
<td>Low-Level Input Voltage</td>
<td>Data Inputs A_n Control Pin $/OE$</td>
<td>2.70 to 3.60</td>
<td>2.70 to 3.60</td>
<td>.80</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.30 to 2.70</td>
<td>2.30 to 2.70</td>
<td>.70</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.65 to 2.30</td>
<td>1.65 to 2.30</td>
<td>.35VCCA</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.40 to 1.65</td>
<td>1.40 to 1.65</td>
<td>.35VCCA</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.10 to 1.40</td>
<td>1.10 to 1.40</td>
<td>.10VCCA</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>V_{ILB}</td>
<td>Low-Level Input Voltage</td>
<td>Data Inputs B_n</td>
<td>2.70 to 3.60</td>
<td>2.70 to 3.60</td>
<td>.80</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.30 to 2.70</td>
<td>2.30 to 2.70</td>
<td>.70</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.65 to 2.30</td>
<td>1.65 to 2.30</td>
<td>.35VCCB</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.40 to 1.65</td>
<td>1.40 to 1.65</td>
<td>.35VCCB</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.10 to 1.40</td>
<td>1.10 to 1.40</td>
<td>.10VCCB</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>V_{OHA}</td>
<td>High-Level Output Voltage$^3)$</td>
<td>$I_{OH} = 4\ \mu A$</td>
<td>1.10 to 3.60</td>
<td>1.10 to 3.60</td>
<td>1.10 to 3.60</td>
<td>1.10 to 3.60</td>
<td>$V_{CCA} -.40$</td>
<td>V</td>
</tr>
<tr>
<td>V_{OHB}</td>
<td>Low-Level Output Voltage$^3)$</td>
<td>$I_{OH} = 4\ \mu A$</td>
<td>1.10 to 3.60</td>
<td>1.10 to 3.60</td>
<td>1.10 to 3.60</td>
<td>1.10 to 3.60</td>
<td>$V_{CCB} -.40$</td>
<td>V</td>
</tr>
<tr>
<td>V_{OLA}</td>
<td>Low-Level Output Voltage$^3)$</td>
<td>$I_{OL} = 4\ \mu A$</td>
<td>1.10 to 3.60</td>
<td>1.10 to 3.60</td>
<td>1.10 to 3.60</td>
<td>1.10 to 3.60</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>V_{OLB}</td>
<td>Low-Level Output Voltage$^3)$</td>
<td>$I_{OL} = 4\ \mu A$</td>
<td>1.10 to 3.60</td>
<td>1.10 to 3.60</td>
<td>1.10 to 3.60</td>
<td>1.10 to 3.60</td>
<td></td>
<td>V</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>V_N (V)</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>$I_{(HOLD)}$</td>
<td>Bus-Hold Input Minimum Drive Current</td>
<td></td>
<td>0.80 V</td>
<td>3.00</td>
<td>3.00</td>
<td>75.0</td>
<td>µA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.00 V</td>
<td>3.00</td>
<td>3.00</td>
<td>-75.0</td>
<td>µA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.70 V</td>
<td>2.30</td>
<td>2.30</td>
<td>45.0</td>
<td>µA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.60 V</td>
<td>2.30</td>
<td>2.30</td>
<td>-45.0</td>
<td>µA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.57 V</td>
<td>1.65</td>
<td>1.65</td>
<td>25.0</td>
<td>µA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.07 V</td>
<td>1.65</td>
<td>1.65</td>
<td>-25.0</td>
<td>µA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.49 V</td>
<td>1.40</td>
<td>1.40</td>
<td>11.0</td>
<td>µA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.91 V</td>
<td>1.40</td>
<td>1.40</td>
<td>-11.0</td>
<td>µA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.11 V</td>
<td>1.10</td>
<td>1.10</td>
<td>4.0</td>
<td>µA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.99 V</td>
<td>1.10</td>
<td>1.10</td>
<td>-4.0</td>
<td>µA</td>
</tr>
</tbody>
</table>

Continued on following page...
DC Electrical Characteristics (Continued)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>V_{CCA} (V)</th>
<th>V_{CCB} (V)</th>
<th>Min.</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>$I_{(ODH)}$</td>
<td>Bus-Hold Input Overdrive High Current<sup>(4)</sup></td>
<td>Data Inputs A_n, B_n</td>
<td>3.60</td>
<td>3.60</td>
<td>450.00</td>
<td></td>
<td>μA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.70</td>
<td>2.70</td>
<td>300.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.95</td>
<td>1.95</td>
<td>200.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.60</td>
<td>1.60</td>
<td>120.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.40</td>
<td>1.40</td>
<td>80.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{(ODL)}$</td>
<td>Bus-Hold Input Overdrive Low Current<sup>(5)</sup></td>
<td>Data Inputs A_n, B_n</td>
<td>3.60</td>
<td>3.60</td>
<td>-450.00</td>
<td></td>
<td>μA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.70</td>
<td>2.70</td>
<td>-300.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.95</td>
<td>1.95</td>
<td>-200.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.60</td>
<td>1.60</td>
<td>-120.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.40</td>
<td>1.40</td>
<td>-80.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_i</td>
<td>Input Leakage Current</td>
<td>Control Inputs /OE, $V_{IH}=V_{CCA}$ or GND</td>
<td>1.10 to 3.60</td>
<td>3.60</td>
<td>±1.0</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td>I_{OFF}</td>
<td>Power-Off Leakage Current</td>
<td>A_n Port $V_O=0$ to 3.6 V</td>
<td>0</td>
<td>3.6</td>
<td>±2.0</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>B_n Port $V_O=0$ to 3.6 V</td>
<td>3.60</td>
<td>0</td>
<td>±2.0</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td>I_{OZ}</td>
<td>3-State Output Leakage</td>
<td>Data Outputs A_n, B_n $V_O=0$ V or 3.6 V, /OE=V_{IH}</td>
<td>3.60</td>
<td>3.60</td>
<td>±5.0</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Data Outputs $A_n, V_O=0$ V or 3.6 V, /OE=GND</td>
<td>3.60</td>
<td>0</td>
<td>±5.0</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Data Outputs $B_n, V_O=0$ V or 3.6 V, /OE=GND</td>
<td>0</td>
<td>3.60</td>
<td>±5.0</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td>I_{CCAB}</td>
<td>Quiescent Supply Current<sup>(6, 7)</sup></td>
<td>$V_{IH}=V_{CCI}$ or GND; $I_O=0$, /OE=GND</td>
<td>1.10 to 3.60</td>
<td>1.10 to 3.60</td>
<td>10.0</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td>I_{CCZ}</td>
<td></td>
<td>$V_{IH}=V_{CCI}$ or GND; $I_O=0$, /OE=GND</td>
<td>1.10 to 3.60</td>
<td>1.10 to 3.60</td>
<td>10.0</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td>I_{CCA}</td>
<td>Quiescent Supply Current</td>
<td>$V_{IH}=V_{CCB}$ or GND; $I_O=0$, B-to-A Direction, /OE=GND</td>
<td>0</td>
<td>1.10 to 3.60</td>
<td>-10.0</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.10 to 3.60</td>
<td>0</td>
<td>10.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{CCB}</td>
<td></td>
<td>$V_{IH}=V_{CCB}$ or GND; $I_O=0$, A-to-B Direction, /OE=GND</td>
<td>1.10 to 3.60</td>
<td>0</td>
<td>-10.0</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>1.10 to 3.60</td>
<td>10.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:

3. This is the output voltage for static conditions. Dynamic drive specifications are given in the Dynamic Output Electrical Characteristics table.
4. An external drive must source at least the specified current to switch LOW-to-HIGH.
5. An external drive must source at least the specified current to switch HIGH-to-LOW.
6. V_{CCI} is the V_{CC} associated with the input side.
7. Reflects current per supply, V_{CCA} or V_{CCB}.
Dynamic Output Electrical Characteristic

A Port \((A_n)\)

Output Load: \(C_L=15 \text{ pF}, R_L > M\Omega (C_{I/O}=4 \text{ pF}), T_A=-40 \text{ to } 85^\circ C\)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>(V_{CCA}=3.0 \text{ V to } 3.6 \text{ V})</th>
<th>(V_{CCA}=2.3 \text{ V to } 2.7 \text{ V})</th>
<th>(V_{CCA}=1.65 \text{ V to } 1.95 \text{ V})</th>
<th>(V_{CCA}=1.4 \text{ V to } 1.6 \text{ V})</th>
<th>(V_{CCA}=1.1 \text{ V to } 1.3 \text{ V})</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_{rise})</td>
<td>Output Rise Time A Port(^{9})</td>
<td>3.0</td>
<td>3.5</td>
<td>4.0</td>
<td>5.0</td>
<td>7.5</td>
<td>ns</td>
</tr>
<tr>
<td>(t_{fall})</td>
<td>Output Fall Time A Port(^{10})</td>
<td>3.0</td>
<td>3.5</td>
<td>4.0</td>
<td>5.0</td>
<td>7.5</td>
<td>ns</td>
</tr>
<tr>
<td>(I_{OH})</td>
<td>Dynamic Output Current High(^{9})</td>
<td>-11.4</td>
<td>-7.5</td>
<td>-4.7</td>
<td>-3.2</td>
<td>-1.7</td>
<td>mA</td>
</tr>
<tr>
<td>(I_{OL})</td>
<td>Dynamic Output Current Low(^{10})</td>
<td>+11.4</td>
<td>+7.5</td>
<td>+4.7</td>
<td>+3.2</td>
<td>+1.7</td>
<td>mA</td>
</tr>
</tbody>
</table>

B Port \((B_n)\)

Output Load: \(C_L=15 \text{ pF}, R_L > M\Omega (C_{I/O}=5 \text{ pF}), T_A=-40 \text{ to } 85^\circ C\)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>(V_{CCB}=3.0 \text{ V to } 3.6 \text{ V})</th>
<th>(V_{CCB}=2.3 \text{ V to } 2.7 \text{ V})</th>
<th>(V_{CCB}=1.65 \text{ V to } 1.95 \text{ V})</th>
<th>(V_{CCB}=1.4 \text{ V to } 1.6 \text{ V})</th>
<th>(V_{CCB}=1.1 \text{ V to } 1.3 \text{ V})</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_{rise})</td>
<td>Output Rise Time B Port(^{9})</td>
<td>3.0</td>
<td>3.5</td>
<td>4.0</td>
<td>5.0</td>
<td>7.5</td>
<td>ns</td>
</tr>
<tr>
<td>(t_{fall})</td>
<td>Output Fall Time B Port(^{10})</td>
<td>3.0</td>
<td>3.5</td>
<td>4.0</td>
<td>5.0</td>
<td>7.5</td>
<td>ns</td>
</tr>
<tr>
<td>(I_{OH})</td>
<td>Dynamic Output Current High(^{9})</td>
<td>-12.0</td>
<td>-7.9</td>
<td>-5.0</td>
<td>-3.4</td>
<td>-1.8</td>
<td>mA</td>
</tr>
<tr>
<td>(I_{OL})</td>
<td>Dynamic Output Current Low(^{10})</td>
<td>+12.0</td>
<td>+7.9</td>
<td>+5.0</td>
<td>+3.4</td>
<td>+1.8</td>
<td>mA</td>
</tr>
</tbody>
</table>

Notes:

8. Dynamic output characteristics are guaranteed, but not tested.
9. See Figure 7.
10. See Figure 8.
AC Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>$V_{CCA} = 3.0 \text{ to } 3.6 \text{ V}$, $T_A=40 \text{ to } 85^\circ \text{C}$</th>
<th>$V_{CCB}=3.0 \text{ V}$ to 3.6 V</th>
<th>$V_{CCB}=2.3 \text{ V}$ to 2.7 V</th>
<th>$V_{CCB}=1.65 \text{ V}$ to 1.95 V</th>
<th>$V_{CCB}=1.4 \text{ V}$ to 1.6 V</th>
<th>$V_{CCB}=1.1 \text{ V}$ to 1.3 V</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t_{PLH,PHL}$</td>
<td>A to B</td>
<td>0.2</td>
<td>3.5</td>
<td>0.3</td>
<td>3.9</td>
<td>0.5</td>
<td>5.4</td>
<td>0.6</td>
</tr>
<tr>
<td></td>
<td>B to A</td>
<td>0.2</td>
<td>3.5</td>
<td>0.2</td>
<td>3.8</td>
<td>0.3</td>
<td>5.0</td>
<td>0.5</td>
</tr>
<tr>
<td>$t_{PZH,TPZ}$</td>
<td>/OE to A, /OE to B</td>
<td>1.7</td>
<td>1.7</td>
<td>1.7</td>
<td>1.7</td>
<td>1.7</td>
<td>1.7</td>
<td>1.7</td>
</tr>
<tr>
<td>t_{SKEW}</td>
<td>A Port, B Port$^{(11)}$</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>ns</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>$V_{CCA} = 2.3 \text{ V}$ to 2.7 V, $T_A=40 \text{ to } 85^\circ \text{C}$</th>
<th>$V_{CCB}=3.0 \text{ V}$ to 3.6 V</th>
<th>$V_{CCB}=2.3 \text{ V}$ to 2.7 V</th>
<th>$V_{CCB}=1.65 \text{ V}$ to 1.95 V</th>
<th>$V_{CCB}=1.4 \text{ V}$ to 1.6 V</th>
<th>$V_{CCB}=1.1 \text{ V}$ to 1.3 V</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t_{PLH,PHL}$</td>
<td>A to B</td>
<td>0.2</td>
<td>3.8</td>
<td>0.4</td>
<td>4.2</td>
<td>0.5</td>
<td>5.6</td>
<td>0.8</td>
</tr>
<tr>
<td></td>
<td>B to A</td>
<td>0.3</td>
<td>3.9</td>
<td>0.4</td>
<td>4.2</td>
<td>0.5</td>
<td>5.5</td>
<td>0.5</td>
</tr>
<tr>
<td>$t_{PZH,TPZ}$</td>
<td>/OE to A, /OE to B</td>
<td>1.7</td>
<td>1.7</td>
<td>1.7</td>
<td>1.7</td>
<td>1.7</td>
<td>1.7</td>
<td>1.7</td>
</tr>
<tr>
<td>t_{SKEW}</td>
<td>A Port, B Port$^{(11)}$</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>ns</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>$V_{CCA} = 1.65 \text{ V}$ to 1.95 V, $T_A=40 \text{ to } 85^\circ \text{C}$</th>
<th>$V_{CCB}=3.0 \text{ V}$ to 3.6 V</th>
<th>$V_{CCB}=2.3 \text{ V}$ to 2.7 V</th>
<th>$V_{CCB}=1.65 \text{ V}$ to 1.95 V</th>
<th>$V_{CCB}=1.4 \text{ V}$ to 1.6 V</th>
<th>$V_{CCB}=1.1 \text{ V}$ to 1.3 V</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t_{PLH,PHL}$</td>
<td>A to B</td>
<td>0.3</td>
<td>5.0</td>
<td>0.5</td>
<td>5.5</td>
<td>0.8</td>
<td>6.7</td>
<td>0.9</td>
</tr>
<tr>
<td></td>
<td>B to A</td>
<td>0.5</td>
<td>5.4</td>
<td>0.5</td>
<td>5.6</td>
<td>0.8</td>
<td>6.7</td>
<td>1.0</td>
</tr>
<tr>
<td>$t_{PZH,TPZ}$</td>
<td>/OE to A, /OE to B</td>
<td>1.7</td>
<td>1.7</td>
<td>1.7</td>
<td>1.7</td>
<td>1.7</td>
<td>1.7</td>
<td>1.7</td>
</tr>
<tr>
<td>t_{SKEW}</td>
<td>A Port, B Port$^{(11)}$</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>ns</td>
</tr>
</tbody>
</table>

Note:

11. Skew is the variation of propagation delay between output signals and applies only to output signals on the same port (A_n or B_n) and switching with the same polarity (LOW-to-HIGH or HIGH-to-LOW) (see Figure 10). Skew is guaranteed, but not tested.
AC Characteristics (Continued)

$V_{CCA} = 1.4$ V to 1.6 V, $T_A = -40$ to 85°C

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>$V_{CCB} = 3.0$ V to 3.6 V</th>
<th>$V_{CCB} = 2.3$ V to 2.7 V</th>
<th>$V_{CCB} = 1.65$ V to 1.95 V</th>
<th>$V_{CCB} = 1.4$ V to 1.6 V</th>
<th>$V_{CCB} = 1.1$ V to 1.3 V</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_{PLH}, t_{PHL}</td>
<td>A to B</td>
<td>0.5</td>
<td>6.0</td>
<td>0.5</td>
<td>6.5</td>
<td>1.0</td>
<td>7.0</td>
</tr>
<tr>
<td></td>
<td>B to A</td>
<td>0.6</td>
<td>6.8</td>
<td>0.8</td>
<td>6.9</td>
<td>0.9</td>
<td>7.5</td>
</tr>
<tr>
<td>t_{PZH}, t_{PZL}</td>
<td>/OE to A, /OE to B</td>
<td>1.7</td>
<td>1.7</td>
<td>1.7</td>
<td>1.7</td>
<td>1.7</td>
<td>1.7</td>
</tr>
<tr>
<td>t_{SKEW}</td>
<td>A Port, B Port(12)</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>

$V_{CCA} = 1.1$ V to 1.3 V, $T_A = -40$ to 85°C

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>$V_{CCB} = 3.0$ V to 3.6 V</th>
<th>$V_{CCB} = 2.3$ V to 2.7 V</th>
<th>$V_{CCB} = 1.65$ V to 1.95 V</th>
<th>$V_{CCB} = 1.4$ V to 1.6 V</th>
<th>$V_{CCB} = 1.1$ V to 1.3 V</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_{PLH}, t_{PHL}</td>
<td>A to B</td>
<td>7.1</td>
<td>6.5</td>
<td>7.0</td>
<td>7.1</td>
<td>13.5</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td>B to A</td>
<td>10.3</td>
<td>10.5</td>
<td>10.8</td>
<td>11.3</td>
<td>13.5</td>
<td>ns</td>
</tr>
<tr>
<td>t_{PZH}, t_{PZL}</td>
<td>/OE to A, /OE to B</td>
<td>1.7</td>
<td>1.7</td>
<td>1.7</td>
<td>1.7</td>
<td>1.7</td>
<td>1.7</td>
</tr>
<tr>
<td>t_{SKEW}</td>
<td>A Port, B Port(12)</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Note:

12. Skew is the variation of propagation delay between output signals and applies only to output signals on the same port (A or B) and switching with the same polarity (LOW-to-HIGH or HIGH-to-LOW) (see Figure 10). Skew is guaranteed, but not tested.
Maximum Data Rate

T_A=−40 to 85°C.

<table>
<thead>
<tr>
<th>V_{CCA}</th>
<th>$V_{CCB}=3.0$ V to 3.6 V</th>
<th>$V_{CCB}=2.3$ V to 2.7 V</th>
<th>$V_{CCB}=1.65$ V to 1.95 V</th>
<th>$V_{CCB}=1.4$ V to 1.6 V</th>
<th>$V_{CCB}=1.1$ V to 1.3 V</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_{CCA}=3.0$ V to 3.6 V</td>
<td>140</td>
<td>120</td>
<td>100</td>
<td>80</td>
<td>40</td>
<td>Mbps</td>
</tr>
<tr>
<td>$V_{CCA}=2.3$ V to 2.7 V</td>
<td>120</td>
<td>120</td>
<td>100</td>
<td>80</td>
<td>40</td>
<td>Mbps</td>
</tr>
<tr>
<td>$V_{CCA}=1.65$ V to 1.95 V</td>
<td>100</td>
<td>100</td>
<td>80</td>
<td>60</td>
<td>40</td>
<td>Mbps</td>
</tr>
<tr>
<td>$V_{CCA}=1.4$ V to 1.6 V</td>
<td>80</td>
<td>80</td>
<td>60</td>
<td>60</td>
<td>40</td>
<td>Mbps</td>
</tr>
</tbody>
</table>

Notes:
13. Maximum data rate is guaranteed, but not tested.
14. Maximum data rate is specified in megabits per second (see Figure 9). It is equivalent to two times the F-toggle frequency, specified in megahertz. For example, 100 Mbps is equivalent to 50 MHz.

Capacitance

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>$T_A=+25^\circ$C</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_{IN}</td>
<td>Input Capacitance Control Pin (/OE)</td>
<td>$V_{CCA}=V_{CCB}=GND$</td>
<td>Typical</td>
<td>pF</td>
</tr>
<tr>
<td>C_{IO}</td>
<td>Input/Output Capacitance</td>
<td>A_n</td>
<td>$V_{CCA}=V_{CCB}=3.3$ V, /OE=V_{CC}</td>
<td>4</td>
</tr>
<tr>
<td>C_{PD}</td>
<td>Power Dissipation Capacitance</td>
<td>B_n</td>
<td>$V_{CC}=V_{CCB}=3.3$ V, $V_{CC}=0$ V or V_{CC}, $f=10$ MHz</td>
<td>25</td>
</tr>
</tbody>
</table>
I/O Architecture Benefit

The FXLA102 I/O architecture benefits the end user, beyond level translation, in the following three ways:

Auto Direction without an external direction pin.

Drive Capacitive Loads. Automatically shifts to a higher current drive mode only during “Dynamic Mode” or HL / LH transitions.

Lower Power Consumption. Automatically shifts to low-power mode during “Static Mode” (no transitions), lowering power consumption.

The FXLA102 does not require a direction pin. Instead, the I/O architecture detects input transitions on both side and automatically transfers the data to the corresponding output. For example, for a given channel, if both A and B side are at a static LOW, the direction has been established as A → B, and a LH transition occurs on the B port; the FXLA102 internal I/O architecture automatically changes direction from A → B to B → A.

During HL / LH transitions, or “Dynamic Mode,” a strong output driver drives the output channel in parallel with a weak output driver. After a typical delay of approximately 10 ns – 50 ns, the strong driver is turned off, leaving the weak driver enabled for holding the logic state of the channel. This weak driver is called the “bus hold.” “Static Mode” is when only the bus hold drives the channel. The bus hold can be overridden in the event of a direction change. The strong driver allows the FXLA102 to quickly charge and discharge capacitive transmission lines during dynamic mode. Static mode conserves power, where ICC is typically < 5 µA.

Bus Hold Minimum Drive Current

Specifies the minimum amount of current the bus hold driver can source/sink. The bus hold minimum drive current (I_{HOLD}) is V_{CC} dependent and guaranteed in the DC Electrical tables. The intent is to maintain a valid output state in a static mode, but that can be overridden when an input data transition occurs.

Bus Hold Input Overdrive Drive Current

Specifies the minimum amount of current required (by an external device) to overdrive the bus hold in the event of a direction change. The bus hold overdrive (I_{ODH}, I_{ODL}) is V_{CC} dependent and guaranteed in the DC Electrical tables.

Dynamic Output Current

The strength of the output driver during LH / HL transitions is referenced on page 8, Dynamic Output Electrical Characteristics, I_{ODH}, and I_{OLD}.

Test Diagrams

![Test Circuit Diagram](image)

Figure 3. Test Circuit

Table 1. AC Test Conditions

<table>
<thead>
<tr>
<th>Test</th>
<th>Input Signal</th>
<th>Output Enable Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_{PLH}, t_{PHL}</td>
<td>Data Pulses</td>
<td>0 V</td>
</tr>
<tr>
<td>t_{PZL}</td>
<td>0 V</td>
<td>HIGH to LOW Switch</td>
</tr>
<tr>
<td>t_{PZH}</td>
<td>V_{CCI}</td>
<td>HIGH to LOW Switch</td>
</tr>
</tbody>
</table>

Table 2. AC Load

<table>
<thead>
<tr>
<th>V_{cco}</th>
<th>C1</th>
<th>R1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2 V ± 0.1 V</td>
<td>15 pF</td>
<td>1 MΩ</td>
</tr>
<tr>
<td>1.5 V ± 0.1 V</td>
<td>15 pF</td>
<td>1 MΩ</td>
</tr>
<tr>
<td>1.8 V ± 0.15 V</td>
<td>15 pF</td>
<td>1 MΩ</td>
</tr>
<tr>
<td>2.5 V ± 0.2 V</td>
<td>15 pF</td>
<td>1 MΩ</td>
</tr>
<tr>
<td>3.3 V ± 0.3 V</td>
<td>15 pF</td>
<td>1 MΩ</td>
</tr>
</tbody>
</table>

![Waveform Diagram](image)

Figure 4. Waveform for Inverting and Non-Inverting Functions

Notes:
15. Input t_{h} = t_{r} = 2.0 ns, 10% to 90%.
16. Input t_{h} = t_{r} = 2.5 ns, 10% to 90%, at V_{i} = 3.0 V to 3.6 V only.
Figure 5. 3-State Output Low Enable Time

Notes:
17. Input $t_{\text{r}} = t_{\text{f}} = 2.0$ ns, 10% to 90%.
18. Input $t_{\text{r}} = t_{\text{f}} = 2.5$ ns, 10% to 90%, at $V_{I} = 3.0$ V to 3.6 V only.

Figure 6. 3-State Output High Enable Time

Notes:
19. Input $t_{\text{r}} = t_{\text{f}} = 2.0$ ns, 10% to 90%.
20. Input $t_{\text{r}} = t_{\text{f}} = 2.5$ ns, 10% to 90%, at $V_{I} = 3.0$ V to 3.6 V only.

Table 3. Test Measure Points

<table>
<thead>
<tr>
<th>Symbol</th>
<th>V_{CC}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_{\text{MI}}^{(c)}$</td>
<td>$V_{CC}/2$</td>
</tr>
<tr>
<td>V_{MO}</td>
<td>$V_{CCO}/2$</td>
</tr>
<tr>
<td>V_{X}</td>
<td>$0.9 \times V_{CCO}$</td>
</tr>
<tr>
<td>V_{Y}</td>
<td>$0.1 \times V_{CCO}$</td>
</tr>
</tbody>
</table>

Note:
21. $V_{CCI}=V_{CCA}$ for control pin /OE or $V_{MI}=(V_{CCA}/2)$.
Figure 7. Active Output Rise Time and Dynamic Output Current High

\[I_{\text{GH}} \approx (C_L + C_{I/O}) \times \frac{\Delta V_{\text{OUT}}}{\Delta t} = (C_L + C_{I/O}) \times \frac{(80\% - 20\%) \cdot V_{\text{CCO}}}{t_{\text{RISE}}} \]

Figure 8. Active Output Fall Time and Dynamic Output Current Low

\[I_{\text{LO}} \approx (C_L + C_{I/O}) \times \frac{\Delta V_{\text{OUT}}}{\Delta t} = (C_L + C_{I/O}) \times \frac{(80\% - 20\%) \cdot V_{\text{CCO}}}{t_{\text{FALL}}} \]

Figure 9. Maximum Data Rate

\[f = \frac{1}{t_W} \]

Figure 10. Output Skew Time

Note:
22. \[t_{\text{SKW}} = (t_{\text{PHLmax}} - t_{\text{PHLmin}}) \text{ or } (t_{\text{PLHmax}} - t_{\text{PLHmin}}) \]
Physical Dimensions

Notes:
1. PACKAGE CONFORMS TO JEDEC MO-255 VARIATION UAAD
2. DIMENSIONS ARE IN MILLIMETERS
3. DRAWING CONFORMS TO ASME Y.14M-1994
4. PIN 1 FLAG, END OF PACKAGE OFFSET
5. DRAWING FILE NAME: MKT-MAC08AREV4

MAC08AREV4

Figure 11.8-Lead, MicroPak™, 1.6mm Wide

Package drawings are provided as a service to customers considering ON Semiconductor components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact an ON Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of ON Semiconductor’s worldwide terms and conditions, specifically the warranty therein, which covers ON Semiconductor products.
FXLA102 — Low-Voltage Dual-Supply 2-Bit Voltage Translator

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer’s technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, causes of action, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.