Onsemi

Low-Voltage Dual-Supply **6-Bit Voltage Translator** with Auto-Direction Sensing

FXL2SD106

General Description

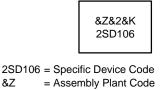
The FXL2SD106 is a configurable dual-voltage-supply translator designed for both uni-directional and bidirectional voltage translation between two logic levels. The device allows translation between voltages as high as 3.6 V to as low as 1.1 V. The A port tracks the V_{CCA} level and the B port tracks the V_{CCB} level. This allows for bi-directional voltage translation over a variety of voltage levels: 1.2 V, 1.5 V, 1.8 V, 2.5 V, and 3.3 V.

The device remains in 3-state until both V_{CC} reach active levels, allowing either V_{CC} to be powered-up first. Internal power-down control circuits place the device in 3-state if either V_{CC} is removed.

The OE input, when low, disables both A and B ports by placing them in a 3-state condition. The FXL2SD106 is designed so that OE and CLK IN are supplied by V_{CCA} .

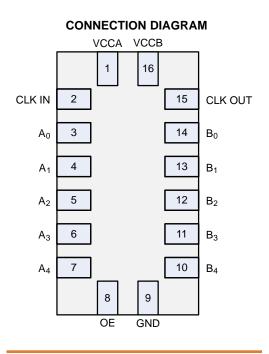
The device senses an input signal on A or B port automatically. The input signal is transferred to the other port.

The FXL2SD106 is not designed for SD card applications. The internal bus hold circuitry conflicts with pull-up resistors. SD cards have internal pull-up resistors on the CD/DAT3 pins.


Features

- Bi-Directional Interface between Two Levels: 1.1 V and 3.6 V
- Fully Configurable: Inputs and Outputs Track V_{CC} Level
- Non-Preferential Power-up; Either V_{CC} May Be Powered-up First
- Outputs Remain in 3-State until Active V_{CC} Level is Reached
- Outputs Switch to 3-State if Either V_{CC} is at GND
- Power-Off Protection
- Bus hold on Data Inputs Eliminates Need for Pull-up Resistors (Do NOT Use Resistors on the A or B Ports)
- OE and CLK IN are Referenced to V_{CCA} Voltage
- Packaged in 16-Terminal DQFN (2.5 mm x 3.5 mm)
- Direction Control Not Needed
- 80 Mbps Throughput Translating between 1.8 V and 2.5 V
- ESD Protection Exceeds:
 - 12 kV HBM (B port I/O to GND) (per JESD22–A114 & Mil Std 883e 3015.7)
 - ◆ 8 kV HBM (A port I/O to GND) (per JESD22–A114 & Mil Std 883e 3015.7)
 - 1 kV CDM (per ESD STM 5.3)

WQFN16 3.5x2.5. 0.5P CASE 510CC

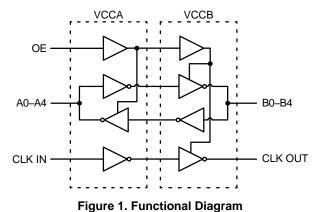


= 2-Digit Date Code

&Z

&2

&K = 2-Digits Lot Run Traceability Code


ORDERING INFORMATION

See detailed ordering and shipping information on page 8 of this data sheet

PIN DESCRIPTION

Number	Name	Description
1	V _{CCA}	A-Side Power Supply
2	CLK IN	A-Side Input
3–7	A ₀ -A ₄	A-Side Inputs or 3-State Outputs
8	OE	Output Enable Input
9	GND	Ground
10–14	B ₄ –B ₀	B-Side Inputs or 3-State Outputs
15	CLK OUT	3-State Output
16	V _{CCB}	B-Side Power Supply

Functional Diagram

c c

ABSOLUTE MAXIMUM RATINGS

FUNCTIONAL TABLE

Control	
OE	Outputs
LOW Logic Level	3-State
HIGH Logic Level	Normal Operation

Power-Up/Power-Down Sequencing

FXL translators offer an advantage in that either V_{CC} may be powered up first. This benefit derives from the chip design. When either V_{CC} is at 0 volts, outputs are in a high-impedance state. The control input (OE) is designed to track the V_{CCA} supply. A pull-down resistor tying OE to GND should be used to ensure that bus contention, excessive currents, or oscillations do not occur during power-up / power-down. The size of the pull-down resistor is based upon the current-sinking capability of the device driving the OE pin.

The recommended power-up sequence is the following:

- 1. Apply power to the first V_{CC} .
- 2. Apply power to the second V_{CC} .
- 3. Drive the OE input high to enable the device.
- The recommended power-down sequence is the following: 1. Drive OE input low to disable the device.
 - 2. Barrous power from either Vac
 - 2. Remove power from either V_{CC} .
 - 3. Remove power from other V_{CC} .

Symbol	Parameter	Rating
V _{CCA} , V _{CCB}	Supply Voltage	–0.5 V to +4.6 V
VI	DC Input Voltage I/O Port A I/O Port B OE, CLK IN	-0.5 V to +4.6 V -0.5 V to +4.6 V -0.5 V to +4.6 V
Vo	Output Voltage (Note 1) Outputs 3-STATE Outputs Active (A _n) Outputs Active (B _n , CLK OUT)	-0.5 V to +4.6 V -0.5 V to V _{CCA} + 0.5 V -0.5 V to V _{CCB} + 0.5 V
I _{IK}	DC Input Diode Current at $V_I < 0 V$	–50 mA
I _{ОК}	DC Output Diode Current at $V_0 < 0 V$ $V_0 > V_{CC}$	–50 mA +50 mA
I _{OH} / I _{OL}	DC Output Source/Sink Current	–50 mA / +50 mA
I _{CC}	DC V _{CC} or Ground Current per Supply Pin	±100 mA
T _{STG}	Storage Temperature Range	–65 °C to +150 °C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. I_O Absolute Maximum Rating must be observed.

RECOMMENDED OPERATING CONDITIONS (Note 2)

Symbol	Parameter	Rating
$V_{\text{CCA}} \text{or} V_{\text{CCB}}$	Power Supply Operating	1.1 V to 3.6 V
	Input Voltage Port A Port B OE, CLK IN	0.0 V to 3.6 V 0.0 V to 3.6 V 0.0 V to V _{CCA}
	Dynamic Output Current in I _{OH} /I _{OL} with V _{CC} at 3.0 V to 3.6 V 2.3 V to 2.7 V 1.65 V to 1.95 V 1.4 V to 1.65 V 1.1 V to 1.4 V	±18.0 mA ±11.8 mA ±7.4 mA ±5.0 mA ±2.6 mA
	Static Output Current I_{OH}/I_{OL} with V_{CC} at 1.1 V to 3.6 V	±20.0 μA
T _A	Free Air Operating Temperature	–40 °C to +85 °C
$\Delta t / \Delta V$	Maximum Input Edge Rate V _{CCA/B} = 1.1 V to 3.6 V	10 ns/V

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.
All unused inputs and I/O pins must be held at V_{CCI} or GND.

DC ELECTRICAL CHARACTERISTICS (T_A = -40 $^\circ C$ to 85 $^\circ C)$

Symbol	Parameter	$V_{CCA}(V)$	V _{CCB} (V)	Conditions	Min	Тур	Мах	Unit
V _{IH}	High Level Input Voltage	1.4–3.6	1.1–3.6	Data inputs A _n , CLK IN, OE	$0.6 \times V_{CCA}$	-	_	V
		1.1–1.4	1.1–3.6		$0.9 \times V_{CCA}$	-	_	
		1.1–3.6	1.4–3.6	Data inputs B _n	$0.6 \times V_{CCB}$	-	-	
		1.1–3.6	1.1–1.4		$0.9 \times V_{CCB}$	-	_	
VIL	Low Level Input Voltage	1.4–3.6	1.1–3.6	Data inputs A _n , CLK IN, OE	-	-	0.35 x V _{CCA}	V
		1.1 –1.4	1.1–3.6		_	-	0.1 x V _{CCA}	
		1.1–3.6	1.4–3.6	Data inputs B _n	-	-	0.35 x V _{CCB}	
		1.1–3.6	1.1–1.4		-	-	0.1 x V _{CCB}	
V _{OH}	High Level Output	1.65–3.6	1.1–3.6	Data outputs A_n , $I_{HOLD} = -20 \ \mu A$	0.75 x V _{CCA}	-	_	V
(Note 3)	Voltage	1.1–1.4	1.1–3.6		_	0.8	-	
		1.1–3.6	1.65–3.6	Data outputs B_n , $I_{HOLD} = -20 \ \mu A$	0.75 x V _{CCB}	-	-	
		1.1–3.6	1.1–1.4		-	0.8	-	
V _{OL} (Note 3)	Low Level Output	1.65–3.6	1.1–3.6	Data outputs A_n , $I_{HOLD} = 20 \ \mu A$	-	-	$0.2 \times V_{CCA}$	V
(Note 3)	Voltage	1.1–1.4	1.1–3.6		-	0.3	-	
		1.1–3.6	1.65–3.6	Data outputs B_n , I_{HOLD} = 20 μ A	-	-	$0.2 \text{ x V}_{\text{CCB}}$	
		1.1–3.6	1.1–1.4		-	0.3	-	
II(ODH)	Bushold Input Overdrive	3.6	3.6	Data inputs A _n , B _n	450	-	-	μΑ
(Note 4)	High Current	2.7	2.7		300	-	-	
		1.95	1.95		200	-	-	
		1.6	1.6		120	-	-	
		1.4	1.4		80	-	-	
	Bushold Input Overdrive	3.6	3.6	Data inputs A _n , B _n	-450	Ι	-	μΑ
(Note 5)	Low Current	2.7	2.7		-300	Ι	-	
		1.95	1.95		-200	Ι	-	
		1.6	1.6		-120	Ι	-	
		1.4	1.4		-80	Ι	-	
I _I	Input Leakage Current	1.1–3.6	3.6	OE, CLK IN, $V_I = V_{CCA}$ or GND	-	-	±1.0	μΑ

Symbol	Parameter	V _{CCA} (V)	V _{CCB} (V)	Conditions	Min	Тур	Max	Unit
I _{OFF}	Power Off Leakage	0	3.6	A_n , $V_0 = 0$ V to 3.6 V	_	-	±2.0	μΑ
	Current	3.6	0	B_n , CLK OUT, $V_0 = 0$ V to 3.6 V	_	-	±2.0	
I _{OZ} (Note 6)	3-State Output Leakage	3.6	3.6	$\begin{array}{l} A_n, B_n, CLK OUT, V_O = 0 V or \\ 3.6 V, OE = V_{IL} \end{array}$	-	-	±2.0	μΑ
		3.6	0	A_n , $V_O = 0$ V or 3.6 V, OE = Don't Care	_	-	±2.0	
		0	3.6	B_n , CLK OUT, $V_0 = 0 V$ or 3.6 V, OE = Don't Care	_	-	±2.0	
I _{CCA/B} (Note 7, 8)	Quiescent Supply Current	1.1–3.6	1.1–3.6	$V_I = V_{CCI}$ or GND, $I_O = 0$	_	-	5.0	μΑ
I _{CCZ} (Note 7)	Quiescent Supply Current	1.1–3.6	1.1–3.6	$V_{I} = V_{CCI} \text{ or } GND, I_{O} = 0, OE = V_{IL}$	_	-	5.0	μΑ
I _{CCA}	Quiescent Supply	0	1.1–3.6	$V_{I} = V_{CCB}$ or GND; $I_{O} = 0$	-	-	-2.0	μΑ
(Note 7)	Current	1.1–3.6	0	$V_I = V_{CCA}$ or GND; $I_O = 0$	_	-	2.0	1
I _{CCB}	Quiescent Supply	1.1–3.6	0	$V_I = V_{CCB}$ or GND; $I_O = 0$	-	-	-2.0	μA
(Note 7)	Current	0	1.1–3.6	$V_I = V_{CCA}$ or GND; $I_O = 0$	_	-	2.0]

DC ELECTRICAL CHARACTERISTICS (T_A = -40 $^\circ C$ to 85 $^\circ C$) (continued)

This is the output voltage for static conditions. Dynamic drive specifications are given in "Dynamic Output Electrical Characteristics".
 An external driver must source at least the specified current to switch LOW-to-HIGH.

5. An external driver must source at least the specified current to switch HIGH-to-LOW.

6. "Don't Care" indicates any valid logic level. 7. V_{CCI} is the V_{CC} associated with the input side. 8. Reflects current per supply, V_{CCA} or V_{CCB} .

DYNAMIC OUTPUT ELECTRICAL CHARACTERISTICS (Note 9)

A PORT (A_n) Output Load: $C_L = 15 \text{ pF}, R_L > 1 \text{ M}\Omega$

	$T_A = -40$ °C to +85 °C, $V_{CCA} =$										
		3.0 V to 3.6 V		2.3 V to 2.7 V		1.65 V to 1.95 V		1.4 V to 1.6 V		1.1 V to 1.3 V	
Symbol	Parameter	Тур	Max	Тур	Max	Тур	Max	Тур	Max	Тур	Unit
t _{rise} (Note 10)	Output Rise Time A Port	-	3.0	-	3.5	-	4.0	-	5.0	7.5	ns
t _{fall} (Note 11)	Output Fall Time A Port	-	3.0	-	3.5	-	4.0	-	5.0	7.5	ns
I _{OHD} (Note 10)	Dynamic Output Current High	-18.0	-	-11.8	-	-7.4	-	-5.0	-	-2.6	mA
I _{OLD} (Note 11)	Dynamic Output Current Low	+18.0	-	+11.8	-	+7.4	-	+5.0	-	+2.6	mA

B PORT (B_n, CLK OUT)

Output Load: $C_L = 15 \text{ pF}$, $R_L > 1 \text{ M}\Omega$

			$T_A = -40$ °C to +85 °C, $V_{CCB} =$								
		3.0 V to	o 3.6 V	2.3 V to	o 2.7 V	1.65 V to	o 1.95 V	1.4 V to	o 1.6 V	1.1 V to 1.3 V	
Symbol	Parameter	Тур	Max	Тур	Max	Тур	Max	Тур	Max	Тур	Unit
t _{rise} (Note 10)	Output Rise Time B Port	-	3.0	-	3.5	-	4.0	-	5.0	7.5	ns
t _{fall} (Note 11)	Output Fall Time B Port	-	3.0	-	3.5	-	4.0	-	5.0	7.5	ns
I _{OHD} (Note 10)	Dynamic Output Current High	-18.0	I	-11.8	I	-7.4	-	-5.0	I	-2.6	mA
I _{OLD} (Note 11)	Dynamic Output Current Low	+18.0	-	+11.8	-	+7.4	-	+5.0	Ι	+2.6	mA

9. Dynamic Output Characteristics are guaranteed, but not tested.

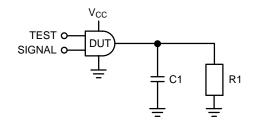
10. See Figure 6.

11. See Figure 7.

AC CHARACTERISTICS

		$T_A = -40$ °C to +85 °C, $V_{CCB} =$									
		3.0 V	- 3.6 V	2.3 V	– 2.7 V	1.65 V	– 1.95 V	1.4 V – 1.6 V		1.1 V – 1.3 V	1
Symbol	Parameter	Тур	Max	Тур	Max	Тур	Max	Тур	Max	Тур	Uni
V _{CCA} = 3.0	V to 3.6 V									•	
t _{PLH} , t _{PHL}	A to B	0.2	3.5	0.3	3.9	0.5	5.4	0.6	6.8	22.0	ns
	B to A	0.2	3.5	0.2	3.8	0.3	5.0	0.5	6.0	15.0	ns
t _{PLH} , t _{PHL}	CLK IN to CLK OUT	-	3.0	-	3.5	-	4.5	-	6.0	15.0	ns
t _{PZL} , t _{PZH}	OE to A, OE to B	-	1.7	-	1.7	-	1.7	-	1.7	1.7	μs
t _{skew} (Note 12)	A Port, B Port	-	0.5	-	0.5	-	0.5	-	1.0	1.0	ns
V _{CCA} = 2.3	V to 2.7 V		-	-	-	-			-		
t _{PLH} , t _{PHL}	A to B	0.2	3.8	0.4	4.2	0.5	5.6	0.8	6.9	22.0	ns
	B to A	0.3	3.9	0.4	4.2	0.5	5.5	0.5	6.5	15.0	ns
t _{PLH} , t _{PHL}	CLK IN to CLK OUT	-	3.5	-	4.0	-	4.5	-	6.5	15.0	ns
t _{PZL} , t _{PZH}	OE to A, OE to B	-	1.7	-	1.7	-	1.7	-	1.7	1.7	μs
t _{skew} (Note 12)	A Port, B Port	-	0.5	-	0.5	-	0.5	-	1.0	1.0	ns
V _{CCA} = 1.6	5 V to 1.95 V		-	-	-	-					
t _{PLH} , t _{PHL}	A to B	0.3	5.0	0.5	5.5	0.8	6.7	0.9	7.5	22.0	ns
	B to A	0.5	5.4	0.5	5.6	0.8	6.7	1.0	7.0	15.0	ns
t _{PLH} , t _{PHL}	CLK IN to CLK OUT	-	4.5	-	4.5	-	6.3	-	6.7	15.0	ns
t _{PZL} , t _{PZH}	OE to A, OE to B	-	1.7	-	1.7	-	1.7	-	1.7	1.7	μs
t _{skew} (Note 12)	A Port, B Port	-	0.5	-	0.5	-	0.5	-	1.0	1.0	ns
V _{CCA} = 1.4	V to 1.6 V										
t _{PLH} , t _{PHL}	A to B	0.5	6.0	0.5	6.5	1.0	7.0	1.0	8.5	22.0	ns
	B to A	0.6	6.8	0.8	6.9	0.9	7.5	1.0	8.5	15.0	ns
t _{PLH} , t _{PHL}	CLK IN to CLK OUT	-	6.0	-	6.5	-	6.7	-	8.5	15.0	ns
t _{PZL} , t _{PZH}	OE to A, OE to B	-	1.7	-	1.7	-	1.7	-	1.7	1.7	μs
t _{skew} (Note 12)	A Port, B Port	-	1.0	-	1.0	-	1.0	-	1.0	1.0	ns

12. Skew is the variation of propagation delay between output signals and applies only to output signals on the same port (A_n or B_n) and switching with the same polarity (Low-to-High or High-to-Low). See Figure 9.

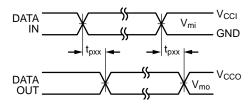

MAXIMUM DATA RATE (Note 13, 14)

		T _A = –40 °C to +85 °C, V _{CCB} =					
	3.0 V to 3.6 V	2.3 V to 2.7 V	1.65 V to 1.95 V	1.4 V to 1.6 V	1.1 V to 1.3 V		
V _{CCA}	Min	Min	Min	Min	Min	Unit	
V_{CCA} = 3.0 V to 3.6 V	100	100	80	60	20	Mbps	
V_{CCA} = 2.3 V to 2.7 V	100	100	80	60	20	Mbps	
V _{CCA} =1.65 V to 1.95 V	80	80	60	40	20	Mbps	
V _{CCA} = 1.4 V to 1.6 V	60	60	40	40	20	Mbps	
	Тур	Тур	Тур	Тур	Тур		
V _{CCA} = 1.1 V to 1.3 V	20	20	20	20	20	Mbps	

Maximum data rate is guaranteed but not tested.
 Maximum data rate is specified in megabits per second. See Figure 8. It is equivalent to two times the F-toggle frequency, specified in megahertz. For example, 100 Mbps is equivalent to 50 MHz.

CAPACITANCE

				T _A = +25 °C	
Symbol	Parameter		Conditions	Typical	Unit
C _{IN}	Input Capacitance, OE, CL	K IN	VccA = VccB = GND	4	pF
C _{I/O}	Input/Output Capacitance	A _n	VccA = VccB = 3.3 V, OE = VccA	5	pF
		B _n , CLK OUT		6	
C _{PD}	Power Dissipation Capacita	nce	VccA = VccB = 3.3 V, Vi = 0 V or Vcc, f = 10 MHz	25	pF



AC LOAD TABLE

V _{cco}	CI	RI
1.2 V ±0.1 V	15 pF	1 MΩ
1.5 V ±0.1 V	15 pF	1 MΩ
1.8 V ±0.15 V	15 pF	1 MΩ
2.5 V ±0.2 V	15 pF	1 MΩ
3.3 V ±0.3 V	15 pF	1 MΩ


Test	Input Signal	Output Enable Control
t _{PLH} , t _{PHL}	Data Pulses	V _{CCA}
t _{PZL}	0 V	Low to High Switch
t _{PZH}	V _{CCI}	Low to High Switch

Figure 2. AC Test Circuit

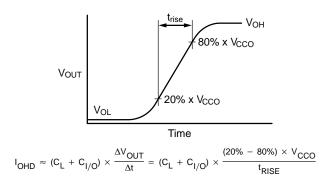

Input t_R = t_F = 2.0 ns, 10% to 90% Input t_R = t_F = 2.5 ns, 10% to 90%, @ Vi = 3.0 V to 3.6 V only

Figure 3. Waveform for Inverting and Non-inverting Functions

Input $t_R = t_F = 2.0$ ns, 10% to 90% Input $t_R = t_F = 2.5$ ns, 10% to 90%, @ Vi = 3.0 V to 3.6 V only

tw

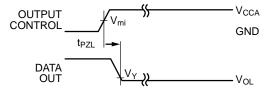
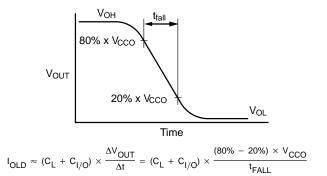

Max. data rate, $f = 1 / t_W$

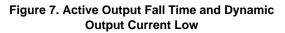
Figure 8. Maximum Data Rate

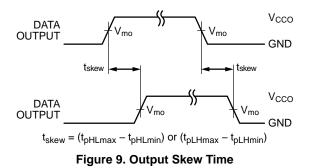
V_{CCI} / 2

DATA

IN


Input $t_R = t_F = 2.0$ ns, 10% to 90%


Input $t_R = t_F = 2.5$ ns, 10% to 90%, @ Vi = 3.0 V to 3.6 V only


Figure 4. 3-STATE Output Low Enable Time for Low Voltage Logic

Symbol	Vcc
Vmi (Note 15)	V _{CCI} /2
Vmo	V _{CCO} / 2
VX	0.9 x V _{CCO}
VY	0.1 x V _{CCO}

15. $V_{CCI} = V_{CCA}$ for control pin OE or Vmi = ($V_{CCA} / 2$).

Vcci

GND

V_{CCI} / 2

ORDERING INFORMATION

Order Number	Package Number	Package Description	Shipping [†]
FXL2SD106BQX	MLP16E	16-Terminal Depopulated Quad Very-Thin Flat Pack, No Leads (DQFN), JEDEC MO-241, 2.5 mm x 3.5 mm (Pb-Free, Halide Free)	3000 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

10

7

0.24 TYP

<u> 8 XXXXX</u> 9

XXXXX 8

4.50 MAX

2.70 MAX

-1.90 MAX

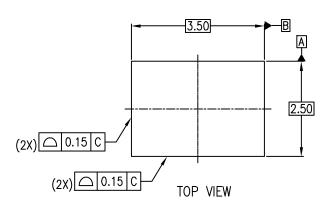
RECOMMENDED LAND PATTERN

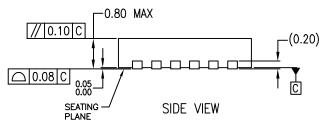
 \otimes

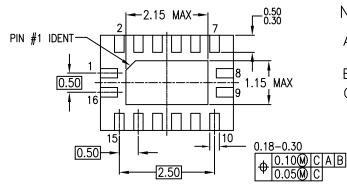
15

WQFN16 3.5x2.5, 0.5P CASE 510CC ISSUE O

DATE 31 AUG 2016


1.00 MAX


1.70


MAX

3.50

MAX

BOTTOM VIEW

NOTES:

16

0.50 TYF

0.50 TYP

XXXX

(0.90)

XXXX

- A. CONFORMS TO JEDEC REGISTRATION M0-241, VARIATION AB
- B. DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994

DOCUMENT NUMBER:	98AON13644G	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	WQFN16 3.5X2.5, 0.5P		PAGE 1 OF 1		
onsemi and ONSEMi, are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves					

onsemi and OTISCITIL are trademarks of Semiconductor Components industries, LLC doa onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>