To learn more about ON Semiconductor, please visit our website at www.onsemi.com

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor’s system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. “Typical” parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
FPF1039
Low On-Resistance, Slew-Rate-Controlled Load Switch

Features

- 1.2 V to 5.5 V Input Voltage Operating Range
- Typical \(R_{ON} \):
 - 20 mΩ at \(V_{IN}=5.5 \) V
 - 21 mΩ at \(V_{IN}=4.5 \) V
 - 37 mΩ at \(V_{IN}=1.8 \) V
 - 75 mΩ at \(V_{IN}=1.2 \) V
- Slew Rate / Inrush Control with \(t_r \): 2.7 ms (Typical)
- 3.5 A Maximum Continuous Current Capability
- Output Capacitor Discharge Function
- Low <1 μA Shutdown Current
- ESD Protected: Above 8 kV HBM, 1.5 kV CDM
- GPIO / CMOS- Compatible Enable Circuitry

Applications

- HDD, Storage, and Solid-State Memory Devices
- Portable Media Devices, UMPC, Tablets, MIDs
- Wireless LAN Cards and Modules
- SLR Digital Cameras
- Portable Medical Devices
- GPS and Navigation Equipment
- Industrial Handheld and Enterprise Equipment

Description

The FPF1039 advanced load-management switch target applications requiring a highly integrated solution for disconnecting loads powered from DC power rail (<6 V) with stringent shutdown current targets and high load capacitances (up to 200 μF). The FPF1039 consists of slew-rate controlled low-impedance MOSFET switch (21 mΩ typical) and other integrated analog features. The slew-rate controlled turn-on characteristic prevents inrush current and the resulting excessive voltage drop on power rails.

This device has exceptionally low shutdown current drain (<1 μA maximum) that facilitates compliance in low standby power applications. The input voltage range operates from 1.2 V to 5.5 V DC to support a wide range of applications in consumer, optical, medical, storage, portable, and industrial device power management.

Switch control is managed by a logic input (active HIGH) capable of interfacing directly with low-voltage control signal / GPIO with no external pull-up required. The device is packaged in advanced fully “green” 1mm x1.5 mm Wafer-Level Chip-Scale Packaging (WLCSP); providing excellent thermal conductivity, small footprint, and low electrical resistance for wider application usage.

Ordering Information

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Top Mark</th>
<th>Switch (R_{ON}) (Typical) at 4.5 (V_{IN})</th>
<th>Input Buffer</th>
<th>Output Discharge</th>
<th>ON Pin Activity</th>
<th>(t_r)</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>FPF1039UCX</td>
<td>QF</td>
<td>21 mΩ</td>
<td>CMOS</td>
<td>65Ω</td>
<td>Active HIGH</td>
<td>2.7 ms</td>
<td>6-Bump, WLCSP, 1.0 mm x 1.5 mm, 0.5 mm Pitch</td>
</tr>
<tr>
<td>FPF1039BUCX</td>
<td>QF</td>
<td>21 mΩ</td>
<td>CMOS</td>
<td>65Ω</td>
<td>Active HIGH</td>
<td>2.7 ms</td>
<td>6-Bump, WLCSP with Backside Laminate, 1.0 mm x 1.5 mm, 0.5 mm Pitch</td>
</tr>
</tbody>
</table>
Application Diagram

Figure 1. Typical Application

Functional Block Diagram

Figure 2. Functional Block Diagram

FPF1039 – IntelliMAX™ Advanced Slew Rate Controlled Load Switch

© 2010 Fairchild Semiconductor Corporation

FPF1039 • Rev. 1.5

www.fairchildsemi.com
Pin Configuration

Figure 3. Top View

Figure 4. Bottom View

Pin Definitions

<table>
<thead>
<tr>
<th>Pin #</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1, B1</td>
<td>V<sub>OUT</sub></td>
<td>Switch Output</td>
</tr>
<tr>
<td>A2, B2</td>
<td>V<sub>IN</sub></td>
<td>Supply Input: Input to the Power Switch</td>
</tr>
<tr>
<td>C1</td>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>C2</td>
<td>ON</td>
<td>ON/OFF Control, Active High - GPIO Compatible</td>
</tr>
</tbody>
</table>
Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameters</th>
<th>Min.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V\textsubscript{IN}</td>
<td>(V_{\text{IN}}, V_{\text{OUT}}, V_{\text{ON}}) to GND</td>
<td>-0.3</td>
<td>6.0</td>
<td>V</td>
</tr>
<tr>
<td>I\textsubscript{SW}</td>
<td>Maximum Continuous Switch Current</td>
<td>3.5</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>P\textsubscript{D}</td>
<td>Power Dissipation at (T_{\text{A}}=25^\circ\text{C})</td>
<td>1.2</td>
<td></td>
<td>W</td>
</tr>
<tr>
<td>T\textsubscript{STG}</td>
<td>Storage Junction Temperature</td>
<td>-65</td>
<td>+150</td>
<td>°C</td>
</tr>
<tr>
<td>T\textsubscript{A}</td>
<td>Operating Temperature Range</td>
<td>-40</td>
<td>+85</td>
<td>°C</td>
</tr>
<tr>
<td>(\theta_{\text{JA}})</td>
<td>Thermal Resistance, Junction-to-Ambient</td>
<td>85(^{(1)})</td>
<td>110(^{(2)})</td>
<td>°C/W</td>
</tr>
<tr>
<td>ESD</td>
<td>Electrostatic Discharge Capability</td>
<td>Human Body Model, JESD22-A114</td>
<td>8.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Charged Device Model, JESD22-C101</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. Measured using 2S2P JEDEC std. PCB.

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to Absolute Maximum Ratings.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameters</th>
<th>Min.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V\textsubscript{IN}</td>
<td>Input Voltage</td>
<td>1.2</td>
<td>5.5</td>
<td>V</td>
</tr>
<tr>
<td>T\textsubscript{A}</td>
<td>Ambient Operating Temperature</td>
<td>-40</td>
<td>+85</td>
<td>°C</td>
</tr>
</tbody>
</table>
Electrical Characteristics

Unless otherwise noted, \(V_{IN} \)=1.2 to 5.5V and \(T_A\)=−40 to +85°C; typical values are at \(V_{IN} \)=4.5V and \(T_A\)=25°C.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameters</th>
<th>Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{IN})</td>
<td>Input Voltage</td>
<td></td>
<td>1.2</td>
<td>5.5</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>(I_{Q,(OFF)})</td>
<td>Off Supply Current</td>
<td>(V_{ON}=\text{GND}, V_{OUT}=\text{Open})</td>
<td>1.0</td>
<td>1.0</td>
<td>(\mu A)</td>
<td></td>
</tr>
<tr>
<td>(I_{SD})</td>
<td>Shutdown Current</td>
<td>(V_{ON}=\text{GND}, V_{OUT}=\text{GND})</td>
<td>0.2</td>
<td>1.0</td>
<td>(\mu A)</td>
<td></td>
</tr>
<tr>
<td>(I_Q)</td>
<td>Quiescent Current</td>
<td>(I_{OUT}=0 \text{ mA})</td>
<td>5.5</td>
<td>8.0</td>
<td>(\mu A)</td>
<td></td>
</tr>
<tr>
<td>(R_{ON})</td>
<td>On Resistance</td>
<td>(V_{IN}=5.5 \text{ V}, I_{OUT}=1 \text{ A}^{(3)})</td>
<td>20</td>
<td>24</td>
<td>mΩ</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{IN}=4.5 \text{ V}, I_{OUT}=1 \text{ A}, T_A=25°C)</td>
<td>21</td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{IN}=3.3 \text{ V}, I_{OUT}=500 \text{ mA}^{(3)})</td>
<td>24</td>
<td>29</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{IN}=2.5 \text{ V}, I_{OUT}=500 \text{ mA}^{(3)})</td>
<td>28</td>
<td>35</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{IN}=1.8 \text{ V}, I_{OUT}=250 \text{ mA}^{(3)})</td>
<td>37</td>
<td>45</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{IN}=1.2 \text{ V}, I_{OUT}=250 \text{ mA}, T_A=25°C)</td>
<td>75</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(R_{PD})</td>
<td>Output Discharge (R_{\text{PULL , DOWN}})</td>
<td>(V_{IN}=4.5 \text{ V}, V_{ON}=0 \text{ V}, I_{\text{FORCE}}=20 \text{ mA}, T_A=25°C)</td>
<td>65</td>
<td>85</td>
<td>(\Omega)</td>
<td></td>
</tr>
<tr>
<td>(V_{IH})</td>
<td>On Input Logic HIGH Voltage</td>
<td></td>
<td>1.0</td>
<td></td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>(V_{IL})</td>
<td>On Input Logic LOW Voltage</td>
<td></td>
<td>0.4</td>
<td></td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>(I_{ON})</td>
<td>On Input Leakage</td>
<td></td>
<td>1.5</td>
<td></td>
<td>(\mu A)</td>
<td></td>
</tr>
</tbody>
</table>

Dynamic Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameters</th>
<th>Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_{DON})</td>
<td>Turn-On Delay(^{4})</td>
<td>(V_{IN}=4.5 \text{ V}, R_L=5 \text{ Ω}, C_L=100 \text{ μF}, T_A=25°C)</td>
<td>1.7</td>
<td></td>
<td>ms</td>
<td></td>
</tr>
<tr>
<td>(t_R)</td>
<td>(V_{OUT}) Rise Time(^{4})</td>
<td>(V_{IN}=4.5 \text{ V}, R_L=5 \text{ Ω}, C_L=100 \text{ μF}, T_A=25°C)</td>
<td>2.7</td>
<td></td>
<td>ms</td>
<td></td>
</tr>
<tr>
<td>(t_{ON})</td>
<td>Turn-On Time(^{6})</td>
<td></td>
<td>4.4</td>
<td></td>
<td>ms</td>
<td></td>
</tr>
<tr>
<td>(t_{DOFF})</td>
<td>Turn-Off Delay(^{4,5})</td>
<td>(V_{IN}=4.5 \text{ V}, R_L=150 \text{ Ω}, C_L=100 \text{ μF}, T_A=25°C)</td>
<td>0.5</td>
<td></td>
<td>ms</td>
<td></td>
</tr>
<tr>
<td>(t_F)</td>
<td>(V_{OUT}) Fall Time(^{4,5})</td>
<td>(V_{IN}=4.5 \text{ V}, R_L=150 \text{ Ω}, C_L=100 \text{ μF}, T_A=25°C)</td>
<td>10.0</td>
<td></td>
<td>ms</td>
<td></td>
</tr>
<tr>
<td>(t_{OFF})</td>
<td>Turn-Off (^{5,7})</td>
<td></td>
<td>10.5</td>
<td></td>
<td>ms</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
3. This parameter is guaranteed by design and characterization; not production tested.
4. \(t_{DON}/t_{DOFF}/t_{R}/t_{F} \) are defined in Figure 32.
5. Output discharge enabled during off-state.
6. \(t_{ON}=t_R+t_{DON} \)
7. \(t_{OFF}=t_F+t_{DOFF} \)
Typical Characteristics

Figure 5. Shutdown Current vs. Temperature

Figure 6. Shutdown Current vs. Supply Voltage

Figure 7. Off Supply Current vs. Temperature (V_{OUT} = 0 V)

Figure 8. Off Supply Current vs. Supply Voltage (V_{OUT} = 0 V)

Figure 9. Quiescent Current vs. Temperature

Figure 10. Quiescent Current vs. Supply Voltage
Figure 11. Quiescent Current vs. On Voltage ($V_{IN} = 4.5$ V)

Figure 12. Quiescent Current vs. On Voltage ($V_{IN} = 5.5$ V)

Figure 13. Output Discharge Resistor RPD vs. Temperature

Figure 14. Output Discharge Resistor RPD vs. Supply Voltage

Figure 15. R_{ON} vs. Temperature

Figure 16. R_{ON} vs. Supply Voltage
Typical Characteristics (Continued)

Figure 17. On Pin Threshold Low vs. Temperature

Figure 18. On Pin Threshold Low vs. V_{IN}

Figure 19. On Pin Threshold High vs. Temperature

Figure 20. On Pin Threshold High vs. V_{IN}

Figure 21. On Pin Threshold vs. Supply Voltage

Figure 22. I_{SW} vs. $(V_{IN}-V_{OUT})$ — SOA

Figure 23. t_{hi}/t_{rf} vs. Temperature
Typical Characteristics (Continued)

Figure 24. t_r/t_{DON} vs. Temperature

Figure 25. t_r vs. Supply Voltage

Figure 26. t_r vs. Supply Voltage

Figure 27. Turn-On Response
$(V_{IN}=4.5\, V, C_{IN}=10\, \mu F, C_L=1\, \mu F, R_L=50\, \Omega)$

Figure 28. Turn-On Response
$(V_{IN}=4.5\, V, C_{IN}=10\, \mu F, C_L=100\, \mu F, R_L=50\, \Omega)$

Figure 29. Turn-Off Response
$(V_{IN}=4.5\, V, C_{IN}=10\, \mu F, C_L=100\, \mu F, \text{without External RL})$
Typical Characteristics (Continued)

Figure 30. Fall Time as a Function of External Resistive Load (C_L=1 μF, 10 μF, and 100 μF)

Figure 31. Fall Time as a Function of External Capacitive Load (R_L=5 Ω, 50 Ω, and 500 Ω)

Figure 32. Timing Diagram
Application Information

Input Capacitor
This IntelliMAX™ switch doesn’t require an input capacitor. To reduce device inrush current, a 0.1 μF ceramic capacitor, C\text{IN}, is recommended close to the VIN pin. A higher value of C\text{IN} can be used to reduce the voltage drop experienced as the switch is turned on into a large capacitive load.

Output Capacitor
While this switch works without an output capacitor: if parasitic board inductance forces V\text{OUT} below GND when switching off; a 0.1 μF capacitor, C\text{OUT}, should be placed between V\text{OUT} and GND.

Fall Time
Device output fall time can be calculated based on RC constant of the external components as follows:

\[t_\text{F} = R_\text{L} \times C_\text{L} \times 2.2 \tag{1} \]

where tf is 90% to 10% fall time, R\text{L} is output load, and C\text{L} is output capacitor.

The same equation works for a device with a pull-down output resistor. R\text{L} is replaced by a parallel connected pull-down and an external output resistor combination as:

\[t_\text{F} = \frac{R_\text{L} \times R_\text{PD}}{R_\text{L} + R_\text{PD}} \times C_\text{L} \times 2.2 \tag{2} \]

where tf is 90% to 10% fall time, R\text{L} is output load, R\text{PD}=65 Ω is output pull-down resistor, and C\text{L} is the output capacitor.

Resistive Output Load
If resistive output load is missing, the IntelliMAX switch does not discharge the output voltage. Output voltage drop depends, in that case, mainly on external device leaks.

Application Specifics

At maximum operational voltage (V_{IN}=5.5 V), device inrush current might be higher than expected. Spike current should be taken into account if V_{IN}>5 V and the output capacitor is much larger than the input capacitor. Input current can be calculated as:

\[I_{IN}(t) = \frac{V_{OUT}(t)}{R_{LOAD}} + \frac{(C_{LOAD} - C_{IN})}{R_{PD}} \frac{dV_{OUT}(t)}{dt} \tag{3} \]

where switch and wire resistances are neglected and capacitors are assumed ideal.

Estimating V\text{OUT}=(V_{IN}/10) and using experimental formula for slew rate (dV\text{OUT}(t)/dt), spike current can be written as:

\[\text{max}(I_{IN}) = \frac{V_{IN}}{10R_{LOAD}} + \frac{(C_{LOAD} - C_{IN})}{R_{PD}} (0.05V_{IN} - 0.255) \tag{4} \]

where supply voltage V_{IN} is in volts, capacitances are in micro farads, and resistance is in ohms.

Example: If V_{IN}=5.5 V, C_{LOAD}=100 μF, C_{IN}=10 μF, and R_{LOAD}=50 Ω; calculate the spike current by:

\[\text{max}(I_{IN}) = \frac{5.5}{10 \times 50} + (100 - 10)(0.05 \times 5.5 - 0.255)A = 1.8A \tag{5} \]

Maximum spike current is 1.8 A, while average ramp-up current is:

\[I_{IN}(t) = \frac{V_{OUT}(t)}{R_{LOAD}} + \frac{(C_{LOAD} - C_{IN})}{R_{PD}} \frac{dV_{IN}(t)}{dt} \]

\[= \frac{2.75}{50} + 100 \times 0.0022 = 0.275 A \tag{6} \]

Output Discharge
FPF1039 contains a 65 Ω on-chip pull-down resistor for quick output discharge. The resistor is activated when the switch is turned off.

Recommended Layout
For best thermal performance and minimal inductance and parasitic effects, it is recommended to keep input and output traces short and capacitors as close to the device as possible. Figure 34 is a recommended layout for this device to achieve optimum performance.
Physical Dimensions

Figure 35. 6 Ball, 1.0 x 1.5 mm Wafer-Level Chip-Scale Packaging (WLCSP)

NOTES:
A. NO JEDEC REGISTRATION APPLIES.
B. DIMENSIONS ARE IN MILLIMETERS.
D. DATUM C IS DEFINED BY THE SPHERICAL CROWNS OF THE BALLS.
E. PACKAGE NOMINAL HEIGHT IS 582 MICRONS ±43 MICRONS (539-625 MICRONS).
F. FOR DIMENSIONS D, E, X, AND Y SEE PRODUCT DATASHEET.
G. DRAWING FILENAME: MKT-UC006AFrev2.
Nominal Values

<table>
<thead>
<tr>
<th>Bump Pitch</th>
<th>Overall Package Height</th>
<th>Silicon Thickness</th>
<th>Solder Bump Height</th>
<th>Solder Bump Diameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5 mm</td>
<td>0.582 mm</td>
<td>0.332 mm</td>
<td>0.250 mm</td>
<td>0.315 mm</td>
</tr>
</tbody>
</table>

Product-Specific Dimensions

<table>
<thead>
<tr>
<th>Product</th>
<th>D</th>
<th>E</th>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>FPF1039UCX</td>
<td>1.46 mm ±0.03</td>
<td>0.96 mm ±0.03</td>
<td>0.230 mm</td>
<td>0.230 mm</td>
</tr>
<tr>
<td>FPF1039BUCX</td>
<td>1.46 mm ±0.03</td>
<td>0.96 mm ±0.03</td>
<td>0.230 mm</td>
<td>0.230 mm</td>
</tr>
</tbody>
</table>
TRADEMARKS

The following includes registered and unregistered trademarks and product names owned by Fairchild Semiconductor and its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

AccuPower™
AttitudeEngine™
Aurora™
AXCAP™
BitC™
Build It Now™
CorePLUS™
CorePOWER™
CROSSVOLT™
CTL™
Current Transfer Logic™
DEUX/PEEP®
Dual Cool™
EcoSpark®
EfficientMax™
ESGC®
Fairchild®
Fairchild Semiconductor®
FACT Quiet® Series™
FACT®
FAS®
FlashCore™
FETBench™
FPS®
FPP™
FRET™
GreenBridge™
Green FPS™
Green FPP™ e-Series™
Gmax™
GTO™
IntelliMAX™
ISOLPLANAR™
Making Small Speakers Sound Louder and Better™
MegaBlock™
MICRCOUPLER™
MicroFit™
MicroPak™
MotionMax™
MotionGrid™
MT™
MTX™
MVR™
wSaver™
Opto22™
OPTOCOUPLER™
OPTOPLANAR™
S-PLIFER™
Power Supply WebDesigner™
PowerTrench™
PowerXS™
Programmable Active Droop™
QFET™
Q5™
Quiet Series™
RepidConfig™
Saving the world, 1mWWWatts at a time™
SignalWise™
SmartMax™
SMART START™
Solutions for Your Success™
SPM™
STEALTH™
SuperFET™
SuperSOT-3™
SuperSOT-8™
SuperSOT-8®
SuperMOS®
SyncFET™
Sync-Lock™

* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HERIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. NO LICNTYARY OR WITHDRAWAL COVERED BY THIS SPECIFICATION THE TERMS AND CONDITIONS SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems which, if (a) failure of a product occurs, can be reasonably expected to result in a significant injury to the user.

2. A critical component in any component of a life support device, or system whose failure to perform can reasonably be expected to cause the failure of the life support device or system, or to affect its safety or effectiessness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation’s Anti-Counterfeiting Policy. Fairchild’s Anti-Counterfeiting Policy is also stated on our website, www.fairchildsemi.com, under Series Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed on our website. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild’s quality standards for handling and storage and provide access to Fairchild’s full range of up-to-date technical and product information. Fairchild and our Authorized Distributors stand behind their products and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms

<table>
<thead>
<tr>
<th>Datasheet Identification</th>
<th>Product Status</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced Information</td>
<td>Formative / In Design</td>
<td>Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.</td>
</tr>
<tr>
<td>Preliminary</td>
<td>First Production</td>
<td>Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.</td>
</tr>
<tr>
<td>No Identification Needed</td>
<td>Full Production</td>
<td>Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.</td>
</tr>
<tr>
<td>Obsolete</td>
<td>Not In Production</td>
<td>Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.</td>
</tr>
</tbody>
</table>