Low On-Resistance, Slew-Rate-Controlled Load Switch

FPF1038

Description
The FPF1038 advanced load-management switch target applications requiring a highly integrated solution for disconnecting loads powered from DC power rail (<6 V) with stringent shutdown current targets and high load capacitances (up to 200 μF). The FPF1038 consists of slew-rate controlled low-impedance MOSFET switch (21 mΩ typical) and other integrated analog features. The slew-rate controlled turn-on characteristic prevents inrush current and the resulting excessive voltage droop on power rails.

These devices have exceptionally low shutdown current drain (<1 μA maximum) that facilitates compliance in low standby power applications. The input voltage range operates from 1.2 V to 5.5 V DC to support a wide range of applications in consumer, optical, medical, storage, portable, and industrial device power management.

Switch control is managed by a logic input (active HIGH) capable of interfacing directly with low-voltage control signal / GPIO with no external pull-up required. The device is packaged in advanced fully “green” 1 mm x 1.5 mm Wafer-Level Chip-Scale Packaging (WLCSP); providing excellent thermal conductivity, small footprint, and low electrical resistance for wider application usage.

Features
- 1.2 V to 5.5 V Input Voltage Operating Range
- Typical R\text{ON}:
 - 20 mΩ at V\text{IN} = 5.5 V
 - 21 mΩ at V\text{IN} = 4.5 V
 - 37 mΩ at V\text{IN} = 1.8 V
 - 75 mΩ at V\text{IN} = 1.2 V
- Slew Rate / Inrush Control with t\text{R}: 2.7 ms (Typical)
- 3.5 A Maximum Continuous Current Capability
- Low <1 μA Shutdown Current
- ESD Protected: Above 8 kV HBM, 1.5 kV CDM
- GPIO / CMOS-Compatible Enable Circuitry
- This Device is Pb-Free, Halide Free and is RoHS Compliant

Applications
- HDD, Storage, and Solid-State Memory Devices
- Portable Media Devices, UMPC, Tablets, MIDs
- Wireless LAN Cards and Modules
- SLR Digital Cameras
- Portable Medical Devices
- GPS and Navigation Equipment
- Industrial Handheld and Enterprise Equipment
APPLICATION DIAGRAM

Figure 1. Typical Application

FUNCTIONAL BLOCK DIAGRAM

Figure 2. Functional Block Diagram
PIN CONFIGURATION

Figure 3. Top View

Figure 4. Bottom View

PIN DEFINITIONS

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1, B1</td>
<td>V_{OUT}</td>
<td>Switch Output</td>
</tr>
<tr>
<td>A2, B2</td>
<td>V_{IN}</td>
<td>Supply Input: Input to the Power Switch</td>
</tr>
<tr>
<td>C1</td>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>C2</td>
<td>ON</td>
<td>ON/OFF Control, Active High – GPIO Compatible</td>
</tr>
</tbody>
</table>
ABSOLUTE MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameters</th>
<th>Min</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{IN}</td>
<td>$V_{IN, V_{OUT}, V_{ON}}$ to GND</td>
<td>-0.3</td>
<td>6.0</td>
<td>V</td>
</tr>
<tr>
<td>I_{SW}</td>
<td>Maximum Continuous Switch Current</td>
<td>$-$</td>
<td>3.5</td>
<td>A</td>
</tr>
<tr>
<td>P_{D}</td>
<td>Power Dissipation at $T_A = 25^\circ C$</td>
<td>$-$</td>
<td>1.2</td>
<td>W</td>
</tr>
<tr>
<td>T_{STG}</td>
<td>Storage Junction Temperature</td>
<td>-65</td>
<td>+150</td>
<td>°C</td>
</tr>
<tr>
<td>T_A</td>
<td>Operating Temperature Range</td>
<td>-40</td>
<td>+85</td>
<td>°C</td>
</tr>
<tr>
<td>θ_{JA}</td>
<td>Thermal Resistance, Junction–to–Ambient</td>
<td>$-$</td>
<td>85 (Note 1)</td>
<td>°C/W</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$-$</td>
<td>110 (Note 2)</td>
<td>°C/W</td>
</tr>
<tr>
<td>ESD</td>
<td>Electrostatic Discharge Capability</td>
<td>Human Body Model, JESD22–A114</td>
<td>8.0</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>Charged Device Model, JESD22–C101</td>
<td>1.5</td>
<td>–</td>
<td></td>
</tr>
</tbody>
</table>

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed; damage may occur and reliability may be affected.

1. Measured using 2S2P JEDEC std. PCB.

RECOMMENDED OPERATING CONDITIONS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameters</th>
<th>Min</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{IN}</td>
<td>Input Voltage</td>
<td>1.2</td>
<td>5.5</td>
<td>V</td>
</tr>
<tr>
<td>T_A</td>
<td>Ambient Operating Temperature</td>
<td>-40</td>
<td>+85</td>
<td>°C</td>
</tr>
</tbody>
</table>

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.
ELECTRICAL CHARACTERISTICS (Unless otherwise noted, \(V_{\text{IN}} = 1.2 \) to 5.5 V and \(T_{\text{A}} = -40 \) to +85°C; typical values are at \(V_{\text{IN}} = 4.5 \) V and \(T_{\text{A}} = 25^\circ \)C.)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Condition</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>BASIC OPERATION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{\text{IN}})</td>
<td>Input Voltage</td>
<td></td>
<td>1.2</td>
<td>−</td>
<td>5.5</td>
<td>V</td>
</tr>
<tr>
<td>(I_{\text{Q(OFF)}})</td>
<td>Off Supply Current</td>
<td>(V_{\text{ON}} = \text{GND}, V_{\text{OUT}} = \text{Open})</td>
<td>−</td>
<td>−</td>
<td>1.0</td>
<td>μA</td>
</tr>
<tr>
<td>(I_{\text{SD}})</td>
<td>Shutdown Current</td>
<td>(V_{\text{ON}} = \text{GND}, V_{\text{OUT}} = \text{GND})</td>
<td>−</td>
<td>0.2</td>
<td>1.0</td>
<td>μA</td>
</tr>
<tr>
<td>(I_{\text{Q}})</td>
<td>Quiescent Current</td>
<td>(I_{\text{OUT}} = 0) mA</td>
<td>−</td>
<td>5.5</td>
<td>8.0</td>
<td>μA</td>
</tr>
<tr>
<td>(R_{\text{ON}})</td>
<td>On Resistance</td>
<td>(V_{\text{IN}} = 5.5) V, (I_{\text{OUT}} = 1) A (Note 3)</td>
<td>−</td>
<td>20</td>
<td>24</td>
<td>mΩ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{\text{IN}} = 4.5) V, (I_{\text{OUT}} = 1) A, (T_{\text{A}} = 25^\circ)C</td>
<td>−</td>
<td>21</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{\text{IN}} = 3.3) V, (I_{\text{OUT}} = 500) mA (Note 3)</td>
<td>−</td>
<td>24</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{\text{IN}} = 2.5) V, (I_{\text{OUT}} = 500) mA (Note 3)</td>
<td>−</td>
<td>28</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{\text{IN}} = 1.8) V, (I_{\text{OUT}} = 250) mA (Note 3)</td>
<td>−</td>
<td>37</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{\text{IN}} = 1.2) V, (I_{\text{OUT}} = 250) mA, (T_{\text{A}} = 25^\circ)C</td>
<td>−</td>
<td>75</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>(V_{\text{IH}})</td>
<td>On Input Logic HIGH Voltage</td>
<td></td>
<td>1.0</td>
<td>−</td>
<td>−</td>
<td>V</td>
</tr>
<tr>
<td>(V_{\text{IL}})</td>
<td>On Input Logic LOW Voltage</td>
<td></td>
<td>−</td>
<td>−</td>
<td>0.4</td>
<td>V</td>
</tr>
<tr>
<td>(I_{\text{ION}})</td>
<td>On Input Leakage</td>
<td></td>
<td>−</td>
<td>−</td>
<td>1.0</td>
<td>μA</td>
</tr>
<tr>
<td>DYNAMIC CHARACTERISTICS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(I_{\text{DON}})</td>
<td>Turn–On Delay (Note 4)</td>
<td>(V_{\text{IN}} = 4.5) V, (R_{\text{L}} = 5) Ω, (C_{\text{L}} = 100) μF, (T_{\text{A}} = 25^\circ)C</td>
<td>−</td>
<td>1.7</td>
<td>−</td>
<td>ms</td>
</tr>
<tr>
<td>(t_{\text{R}})</td>
<td>(V_{\text{OUT}}) Rise Time (Note 4)</td>
<td></td>
<td>−</td>
<td>2.7</td>
<td>−</td>
<td>ms</td>
</tr>
<tr>
<td>(I_{\text{ON}})</td>
<td>Turn–On Time (Note 6)</td>
<td></td>
<td>−</td>
<td>4.4</td>
<td>−</td>
<td>ms</td>
</tr>
<tr>
<td>(I_{\text{DOFF}})</td>
<td>Turn–Off Delay (Note 4)</td>
<td>(V_{\text{IN}} = 4.5) V, (R_{\text{L}} = 150) Ω, (C_{\text{L}} = 100) μF, (T_{\text{A}} = 25^\circ)C, No Load Discharge</td>
<td>−</td>
<td>2.0</td>
<td>−</td>
<td>ms</td>
</tr>
<tr>
<td>(t_{\text{F}})</td>
<td>(V_{\text{OUT}}) Fall Time (Note 4)</td>
<td></td>
<td>−</td>
<td>30.0</td>
<td>−</td>
<td>ms</td>
</tr>
<tr>
<td>(I_{\text{OFF}})</td>
<td>Turn–Off (Note 7)</td>
<td></td>
<td>−</td>
<td>32.0</td>
<td>−</td>
<td>ms</td>
</tr>
</tbody>
</table>

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

3. This parameter is guaranteed by design and characterization; not production tested.
4. \(I_{\text{DON}}/I_{\text{DOFF}}/t_{\text{R}}/t_{\text{F}} \) are defined in Figure 27.
5. Output discharge enabled during off–state.
6. \(I_{\text{ON}} = I_{\text{R}} + I_{\text{DON}} \)
7. \(I_{\text{OFF}} = I_{\text{F}} + I_{\text{DOFF}} \)
TYPICAL CHARACTERISTICS

Figure 5. Shutdown Current vs. Temperature

Figure 6. Shutdown Current vs. Supply Voltage

Figure 7. Off Supply Current vs. Temperature

Figure 8. Off Supply Current vs. Supply Voltage

Figure 9. Quiescent Current vs. Temperature

Figure 10. Quiescent Current vs. Supply Voltage

www.onsemi.com
TYPICAL CHARACTERISTICS (continued)

Figure 11. Quiescent Current vs. On Voltage
\((V_{IN} = 4.5 \text{ V}) \)

Figure 12. Quiescent Current vs. On Voltage
\((V_{IN} = 5.5 \text{ V}) \)

Figure 13. \(R\text{ON} \) vs. Temperature

Figure 14. \(R\text{ON} \) vs. Supply Voltage

Figure 15. On Pin Threshold Low vs. Temperature

Figure 16. On Pin Threshold Low vs. \(V_{IN} \)
TYPICAL CHARACTERISTICS (continued)

Figure 17. On Pin Threshold High vs. Temperature

Figure 18. On Pin Threshold High vs. V_{IN}

Figure 19. On Pin Threshold vs. Supply Voltage

Figure 20. I_{SW} vs. ($V_{IN} - V_{OUT}$) — SOA

Figure 21. t_R/t_{DON} vs. Temperature

Figure 22. t_R/t_F vs. Temperature
Figure 23. \(t_R \) vs. Supply Voltage

Figure 24. \(t_R \) vs. Supply Voltage

Figure 25. Turn–On Response (\(V_{IN} = 4.5 \text{ V}, C_{IN} = 10 \mu\text{F}, C_L = 1 \mu\text{F}, R_L = 50 \Omega \))

Figure 26. Turn–On Response (\(V_{IN} = 4.5 \text{ V}, C_{IN} = 10 \mu\text{F}, C_L = 100 \mu\text{F}, R_L = 5 \Omega \))

Figure 27. Timing Diagram
Input Capacitor

This IntelliMAX™ switch doesn’t require an input capacitor. To reduce device inrush current, a 0.1 μF ceramic capacitor, CIN, is recommended close to the VIN pin. A higher value of CIN can be used to reduce the voltage drop experienced as the switch is turned on into a large capacitive load.

Output Capacitor

While this switch works without an output capacitor; if parasitic board inductance forces VOUT below GND when switching off; a 0.1 μF capacitor, COUT, should be placed between VOUT and GND.

Fall Time

Device output fall time can be calculated based on RC constant of the external components as follows:

$$t_F = R_L \times C_L \times 2.2$$ \hspace{1cm} (eq. 1)

where t_F is 90% to 10% fall time, R_L is output load, and C_L is output capacitor.

The same equation works for a device with a pull–down output resistor. R_L is replaced by a parallel connected pull–down and an external output resistor combination as:

$$t_F = \frac{R_L + R_{PD}}{R_L + R_{PD}} \times C_L \times 2.2$$ \hspace{1cm} (eq. 2)

where t_F is 90% to 10% fall time, R_L is output load, $R_{PD} = 65 \Omega$ is output pull–down resistor, and C_L is the output capacitor.

Resistive Output Load

If resistive output load is missing, the IntelliMAX switch without a pull–down output resistor does not discharge the output voltage. Output voltage drop depends, in that case, mainly on external device leaks.

Application Specifics

![Figure 28. Device Setup](image)

At maximum operational voltage ($V_{IN} = 5.5 \text{ V}$), device inrush current might be higher than expected. Spike current should be taken into account if $V_{IN} > 5 \text{ V}$ and the output capacitor is much larger than the input capacitor. Input current can be calculated as:

$$I_{IN}(t) = \frac{V_{OUT}(t)}{R_{LOAD}} + (C_{LOAD} - C_{IN}) \frac{dV_{OUT}(t)}{dt}$$ \hspace{1cm} (eq. 3)

where switch and wire resistances are neglected and capacitors are assumed ideal.

Estimating $V_{OUT}(t) = V_{IN} / 10$ and using experimental formula for slew rate ($dV_{OUT}(t) / dt$), spike current can be written as:

$$\max(I_{IN}) = \frac{V_{IN}}{10R_{LOAD}} + (C_{LOAD} - C_{IN})(0.05V_{IN} - 0.255)$$ \hspace{1cm} (eq. 4)

where supply voltage V_{IN} is in volts, capacitances are in micro farads, and resistance is in ohms.

Example: If $V_{IN} = 5.5 \text{ V}$, $C_{LOAD} = 100 \mu F$, $C_{IN} = 10 \mu F$, and $R_{LOAD} = 50 \Omega$; calculate the spike current by:

$$\max(I_{IN}) = \frac{5.5}{10 \times 50} + (100 - 10)(0.05 \times 5.5 - 0.255) \text{ A} = 1.8 \text{ A}$$ \hspace{1cm} (eq. 5)

Maximum spike current is 1.8 A, while average ramp–up current is:

$$I_{IN}(t) = \frac{V_{OUT}(t)}{R_{LOAD}} + (C_{LOAD} - C_{IN}) \frac{dV_{IN}(t)}{dt}$$

$$\approx 2.75 / 50 + 100 \times 0.0022 = 0.275 \text{ A}$$ \hspace{1cm} (eq. 6)

Recommended Layout

For best thermal performance and minimal inductance and parasitic effects, it is recommended to keep input and output traces short and capacitors as close to the device as possible. Figure 29 is a recommended layout for this device to achieve optimum performance.
ORDERING INFORMATION

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Top Mark</th>
<th>Switch R_{ON} (Typical) at 4.5 V_{IN}</th>
<th>Input Buffer</th>
<th>Output Discharge</th>
<th>ON Pin Activity</th>
<th>t_R</th>
<th>Package</th>
<th>Shipping†</th>
</tr>
</thead>
<tbody>
<tr>
<td>FPF1038UCX</td>
<td>QE</td>
<td>21 mΩ</td>
<td>CMOS</td>
<td>NA</td>
<td>Active HIGH</td>
<td>2.7 ms</td>
<td>6–Bump, WLCSP, 1.0 mm x 1.5 mm, 0.5 mm Pitch (Pb–Free)</td>
<td>3000 / Tape & Reel</td>
</tr>
</tbody>
</table>

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

IntelliMAX is trademark of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates and/or subsidiaries in the United States and/or other countries.
WLCSP6 1.5x1.0x0.582
CASE 567RL
ISSUE O

DATE 30 NOV 2016

NOTES:
A. NO JEDEC REGISTRATION APPLIES.
B. DIMENSIONS ARE IN MILLIMETERS.
D. DATUM C IS DEFINED BY THE SPHERICAL CROWNS OF THE BALLS.
E. PACKAGE NOMINAL HEIGHT IS 582 MICRONS ±43 MICRONS (539-625 MICRONS).
F. FOR DIMENSIONS D, E, X, AND Y SEE PRODUCT DATASHEET.