Motion SPM® 45 Series

FNA41560T2

General Description
FNA41560T2 is a Motion SPM 45 module providing a fully-featured, high-performance inverter output stage for AC Induction, BLDC, and PMSM motors. These modules integrate optimized gate drive of the built-in IGBTs to minimize EMI and losses, while also providing multiple on-module protection features including under-voltage lockouts, over-current shutdown, thermal monitoring of drive IC, and fault reporting. The built-in, high-speed HVIC requires only a single supply voltage and translates the incoming logic-level gate inputs to the high-voltage, high-current drive signals required to properly drive the module’s internal IGBTs. Separate negative IGBT terminals are available for each phase to support the widest variety of control algorithms.

Features
• UL Certified No. E209204 (UL1557)
• 600 V – 15 A 3–Phase IGBT Inverter with Integral Gate Drives and Protection
• Low Thermal Resistance Using Ceramic Substrate
• Low-Loss, Short–Circuit–Rated IGBTs
• Built-In Bootstrap Diodes and Dedicated Vs Pins Simplify PCB Layout
• Built-In NTC Thermistor for Temperature Monitoring
• Separate Open–Emitter Pins from Low–Side IGBTs for Three–Phase Current Sensing
• Single–Grounded Power Supply
• Isolation Rating of 2000 Vrms / 1 min.
• This is a Pb–Free and Halogen Free/BFR Free Device

Applications
• Motion Control – Home Appliance / Industrial Motor

Related Resources
• AN–9084 – Smart Power Module, Motion SPM® 45 H V3 Series User’s Guide
• AN–9072 – Smart Power Module Motion SPM® in SPM45H Thermal Performance Information
• AN–9071 – Smart Power Module Motion SPM® in SPM45H Mounting Guidance
• AN–9760 – PCB Design Guidance for SPM®
Integrated Power Functions

- 600 V – 15 A IGBT inverter for three-phase DC / AC power conversion (refer to Figure 2)

Integrated Drive, Protection, and System Control Functions

- For inverter high-side IGBTs:
 - gate-drive circuit, high-voltage isolated high-speed level-shifting control circuit,
 - Under-Voltage Lock-Out Protection (UVLO)

NOTE: Available bootstrap circuit example is given in Figures 14

- For inverter low-side IGBTs:
 - gate-drive circuit, Short-Circuit Protection (SCP) control supply circuit,
 - Under-Voltage Lock-Out Protection (UVLO)

- Fault signaling:
 - corresponding to UVLO (low-side supply) and SC faults

- Input interface:
 - active-HIGH interface, works with 3.3 / 5 V logic, Schmitt-trigger input

Pin Configuration

![Figure 1. Top View](image-url)
PIN DESCRIPTIONS

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Pin Name</th>
<th>Pin Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>V<sub>TH</sub></td>
<td>Thermistor Bias Voltage</td>
</tr>
<tr>
<td>2</td>
<td>R<sub>TH</sub></td>
<td>Series Resistor for the Use of Thermistor (Temperature Detection)</td>
</tr>
<tr>
<td>3</td>
<td>P</td>
<td>Positive DC–Link Input</td>
</tr>
<tr>
<td>4</td>
<td>U</td>
<td>Output for U–Phase</td>
</tr>
<tr>
<td>5</td>
<td>V</td>
<td>Output for V–Phase</td>
</tr>
<tr>
<td>6</td>
<td>W</td>
<td>Output for W–Phase</td>
</tr>
<tr>
<td>7</td>
<td>N<sub>U</sub></td>
<td>Negative DC–Link Input for U–Phase</td>
</tr>
<tr>
<td>8</td>
<td>N<sub>V</sub></td>
<td>Negative DC–Link Input for V–Phase</td>
</tr>
<tr>
<td>9</td>
<td>N<sub>W</sub></td>
<td>Negative DC–Link Input for W–Phase</td>
</tr>
<tr>
<td>10</td>
<td>C<sub>SC</sub></td>
<td>Shut Down Input for Short–circuit Current Detection Input</td>
</tr>
<tr>
<td>11</td>
<td>V<sub>FO</sub></td>
<td>Fault Output</td>
</tr>
<tr>
<td>12</td>
<td>IN<sub>(U)</sub></td>
<td>Signal Input for Low–Side W–Phase</td>
</tr>
<tr>
<td>13</td>
<td>IN<sub>(V)</sub></td>
<td>Signal Input for Low–Side V–Phase</td>
</tr>
<tr>
<td>14</td>
<td>IN<sub>(U)</sub></td>
<td>Signal Input for Low–Side U–Phase</td>
</tr>
<tr>
<td>15</td>
<td>COM</td>
<td>Common Supply Ground</td>
</tr>
<tr>
<td>16</td>
<td>V<sub>DD(L)</sub></td>
<td>Low–Side Common Bias Voltage for IC and IGBTs Driving</td>
</tr>
<tr>
<td>17</td>
<td>V<sub>DD(H)</sub></td>
<td>High–Side Common Bias Voltage for IC and IGBTs Driving</td>
</tr>
<tr>
<td>18</td>
<td>IN<sub>(WH)</sub></td>
<td>Signal Input for High–Side W–Phase</td>
</tr>
<tr>
<td>19</td>
<td>IN<sub>(VH)</sub></td>
<td>Signal Input for High–Side V–Phase</td>
</tr>
<tr>
<td>20</td>
<td>IN<sub>(UH)</sub></td>
<td>Signal Input for High–Side U–Phase</td>
</tr>
<tr>
<td>21</td>
<td>VS<sub>(W)</sub></td>
<td>High–Side Bias Voltage Ground for W–Phase IGBT Driving</td>
</tr>
<tr>
<td>22</td>
<td>VB<sub>(W)</sub></td>
<td>High–Side Bias Voltage for W–Phase IGBT Driving</td>
</tr>
<tr>
<td>23</td>
<td>VS<sub>(V)</sub></td>
<td>High–Side Bias Voltage Ground for V–Phase IGBT Driving</td>
</tr>
<tr>
<td>24</td>
<td>VB<sub>(V)</sub></td>
<td>High–Side Bias Voltage for V–Phase IGBT Driving</td>
</tr>
<tr>
<td>25</td>
<td>VS<sub>(U)</sub></td>
<td>High–Side Bias Voltage Ground for U–Phase IGBT Driving</td>
</tr>
<tr>
<td>26</td>
<td>VB<sub>(U)</sub></td>
<td>High–Side Bias Voltage for U–Phase IGBT Driving</td>
</tr>
</tbody>
</table>
Internal Equivalent Circuit and Input/Output Pins

NOTES:
1. Inverter high-side is composed of three normal-IGBTs, freewheeling diodes, and one control IC for each IGBT.
2. Inverter low-side is composed of three sense-IGBTs, freewheeling diodes, and one control IC for each IGBT. It has gate drive and protection functions.
3. Inverter power side is composed of four inverter DC-link input terminals and three inverter output terminals.

Figure 2. Internal Block Diagram
ABSOLUTE MAXIMUM RATINGS (T_J = 25°C, unless otherwise specified)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Rating</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>INVERTER PART</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VPN</td>
<td>Supply Voltage</td>
<td>Applied between P – N_U, N_V, N_W</td>
<td>450</td>
<td>V</td>
</tr>
<tr>
<td>VPN(Surge)</td>
<td>Supply Voltage (Surge)</td>
<td>Applied between P – N_U, N_V, N_W</td>
<td>500</td>
<td>V</td>
</tr>
<tr>
<td>VCES</td>
<td>Collector – Emitter Voltage</td>
<td></td>
<td>600</td>
<td>V</td>
</tr>
<tr>
<td>±IC</td>
<td>Each IGBT Collector Current</td>
<td>T_C = 25°C, T_J < 150°C</td>
<td>15</td>
<td>A</td>
</tr>
<tr>
<td>±ICP</td>
<td>Each IGBT Collector Current (Peak)</td>
<td>T_C = 25°C, T_J < 150°C, Under 1 ms Pulse Width (Note 4)</td>
<td>30</td>
<td>A</td>
</tr>
<tr>
<td>PC</td>
<td>Collector Dissipation</td>
<td>T_C = 25°C per One Chip (Note 4)</td>
<td>38</td>
<td>W</td>
</tr>
<tr>
<td>TJ</td>
<td>Operating Junction Temperature</td>
<td></td>
<td>-40 – 150</td>
<td>°C</td>
</tr>
<tr>
<td>CONTROL PART</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VDD</td>
<td>Control Supply Voltage</td>
<td>Applied between V_DD(UH), V_DD(L) – COM</td>
<td>20</td>
<td>V</td>
</tr>
<tr>
<td>VBS</td>
<td>High-Side Control Bias Voltage</td>
<td>Applied between V_B(U) – V_S(U), V_B(V) – V_S(V), V_B(W) – V_S(W)</td>
<td>20</td>
<td>V</td>
</tr>
<tr>
<td>VIN</td>
<td>Input Signal Voltage</td>
<td>Applied between IN(UH), IN(RH), IN(WH), IN(UH), IN(VL), IN(WL) – COM</td>
<td>-0.3 – V_DD + 0.3</td>
<td>V</td>
</tr>
<tr>
<td>VFO</td>
<td>Fault Output Supply Voltage</td>
<td>Applied between V_FO – COM</td>
<td>-0.3 – V_DD + 0.3</td>
<td>V</td>
</tr>
<tr>
<td>IFO</td>
<td>Fault Output Current</td>
<td>Sink Current at V_FO pin</td>
<td>1</td>
<td>mA</td>
</tr>
<tr>
<td>VSC</td>
<td>Current-Sensing Input Voltage</td>
<td>Applied between C_SC – COM</td>
<td>-0.3 – V_DD + 0.3</td>
<td>V</td>
</tr>
<tr>
<td>BOOTSTRAP DIODE PART</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VRRM</td>
<td>Maximum Repetitive Reverse Voltage</td>
<td></td>
<td>600</td>
<td>V</td>
</tr>
<tr>
<td>IF</td>
<td>Forward Current</td>
<td>T_C = 25°C, T_J < 150°C</td>
<td>0.5</td>
<td>A</td>
</tr>
<tr>
<td>IFP</td>
<td>Forward Current (Peak)</td>
<td>T_C = 25°C, T_J < 150°C, Under 1 ms Pulse Width (Note 4)</td>
<td>2.0</td>
<td>A</td>
</tr>
<tr>
<td>TJ</td>
<td>Operating Junction Temperature</td>
<td></td>
<td>-40 – 150</td>
<td>°C</td>
</tr>
<tr>
<td>TOTAL SYSTEM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VPN(PROT)</td>
<td>Self-Protection Supply Voltage Limit</td>
<td>V_DD – V_BS = 13.5 – 16.5 V, T_J = 150°C, Non-Repetitive, < 2 μs</td>
<td>400</td>
<td>V</td>
</tr>
<tr>
<td>TC</td>
<td>Module Case Operation Temperature</td>
<td>See Figure 1</td>
<td>-40 – 125</td>
<td>°C</td>
</tr>
<tr>
<td>TSSTG</td>
<td>Storage Temperature</td>
<td></td>
<td>-40 – 125</td>
<td>°C</td>
</tr>
<tr>
<td>VISO</td>
<td>Isolation Voltage</td>
<td>60 Hz, Sinusoidal, AC 1 Minute, Connect Pins to Heat Sink Plate</td>
<td>2000</td>
<td>Vrms</td>
</tr>
</tbody>
</table>

THERMAL RESISTANCE

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rth(j−c)Q</td>
<td>Junction to Case Thermal Resistance</td>
<td>Inverter IGBT Part (per 1 / 6 Module)</td>
<td>–</td>
<td>–</td>
<td>3.20</td>
<td>°C/W</td>
</tr>
<tr>
<td>Rth(j−c)F</td>
<td>Inverter FWDI Part (per 1 / 6 Module)</td>
<td></td>
<td>–</td>
<td>–</td>
<td>4.00</td>
<td>°C/W</td>
</tr>
</tbody>
</table>

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

4. These values had been made an acquisition by the calculation considered to design factor.

5. For the measurement point of case temperature (T_C), please refer to Figure 1.
ELECTRICAL CHARACTERISTICS (T_J = 25°C, unless otherwise specified)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V<sub>CE(SAT)</sub></td>
<td>Collector – Emitter Saturation Voltage</td>
<td>V<sub>DD</sub> = V<sub>BS</sub> = 15 V, V<sub>IN</sub> = 5 V</td>
<td>–</td>
<td>1.60</td>
<td>2.20</td>
<td>V</td>
</tr>
<tr>
<td>V<sub>F</sub></td>
<td>FWDI Forward Voltage</td>
<td>V<sub>IN</sub> = 0 V, I<sub>F</sub> = 15 A, T<sub>J</sub> = 25°C</td>
<td>–</td>
<td>2.00</td>
<td>2.60</td>
<td>V</td>
</tr>
<tr>
<td>HS</td>
<td>t<sub>ON</sub></td>
<td>Switching Times</td>
<td>0.40</td>
<td>0.80</td>
<td>1.30</td>
<td>μs</td>
</tr>
<tr>
<td></td>
<td>I<sub>ON</sub></td>
<td>V<sub>PN</sub> = 300 V, V<sub>DD</sub> = V<sub>BS</sub> = 15 V, I<sub>C</sub> = 15 A, T<sub>J</sub> = 25°C</td>
<td>–</td>
<td>0.20</td>
<td>0.50</td>
<td>μs</td>
</tr>
<tr>
<td></td>
<td>t<sub>OFF</sub></td>
<td>V<sub>IN</sub> = 0 V ↔ 5 V, Inductive Load (Note 6)</td>
<td>–</td>
<td>0.85</td>
<td>1.35</td>
<td>μs</td>
</tr>
<tr>
<td></td>
<td>t<sub>C(ON)</sub></td>
<td></td>
<td>–</td>
<td>0.25</td>
<td>0.55</td>
<td>μs</td>
</tr>
<tr>
<td></td>
<td>t<sub>C(OFF)</sub></td>
<td></td>
<td>–</td>
<td>0.10</td>
<td>–</td>
<td>μs</td>
</tr>
<tr>
<td>LS</td>
<td>t<sub>ON</sub></td>
<td>Switching Times</td>
<td>0.45</td>
<td>0.85</td>
<td>1.35</td>
<td>μs</td>
</tr>
<tr>
<td></td>
<td>I<sub>ON</sub></td>
<td>V<sub>PN</sub> = 300 V, V<sub>DD</sub> = V<sub>BS</sub> = 15 V, I<sub>C</sub> = 15 A, T<sub>J</sub> = 25°C</td>
<td>–</td>
<td>0.25</td>
<td>0.55</td>
<td>μs</td>
</tr>
<tr>
<td></td>
<td>t<sub>OFF</sub></td>
<td>V<sub>IN</sub> = 0 V ↔ 5 V, Inductive Load (Note 6)</td>
<td>–</td>
<td>0.90</td>
<td>1.40</td>
<td>μs</td>
</tr>
<tr>
<td></td>
<td>t<sub>C(ON)</sub></td>
<td></td>
<td>–</td>
<td>0.25</td>
<td>0.55</td>
<td>μs</td>
</tr>
<tr>
<td></td>
<td>t<sub>C(OFF)</sub></td>
<td></td>
<td>–</td>
<td>0.15</td>
<td>–</td>
<td>μs</td>
</tr>
<tr>
<td>I<sub>CES</sub></td>
<td>Collector – Emitter Leakage Current</td>
<td>V<sub>CE</sub> = V<sub>CES</sub></td>
<td>–</td>
<td>–</td>
<td>1</td>
<td>mA</td>
</tr>
</tbody>
</table>

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

6. t_{ON} and t_{OFF} include the propagation delay of the internal drive IC. t_{C(ON)} and t_{C(OFF)} are the switching times of IGBT under the given gate driving condition internally. For the detailed information, please see Figure 3.

Figure 3. Switching Time Definition
CONTROL PART

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>IQDDH</td>
<td>Quiescent VDD Supply Current</td>
<td>VDD(H) = 15 V, IN(UH, VH, WH) = 0 V</td>
<td>VDD(H) - COM</td>
<td>-</td>
<td>-</td>
<td>0.10</td>
<td>mA</td>
</tr>
<tr>
<td>IQDDL</td>
<td>Operating VDD Supply Current</td>
<td>VDD(L) = 15 V, IN(UL, VL, WL) = 0 V</td>
<td>VDD(L) - COM</td>
<td>-</td>
<td>-</td>
<td>2.65</td>
<td>mA</td>
</tr>
<tr>
<td>IPDDH</td>
<td>Operating VDD Supply Current</td>
<td>VDD(H) = 15 V, fPWM = 20 kHz, Duty = 50%, Applied to one PWM Signal Input for High-Side</td>
<td>VDD(H) - COM</td>
<td>-</td>
<td>-</td>
<td>0.15</td>
<td>mA</td>
</tr>
<tr>
<td>IPDDL</td>
<td></td>
<td>VDD(L) = 15 V, fPWM = 20 kHz, Duty = 50%, Applied to one PWM Signal Input for Low-Side</td>
<td>VDD(L) - COM</td>
<td>-</td>
<td>-</td>
<td>4.00</td>
<td>mA</td>
</tr>
<tr>
<td>IQBS</td>
<td>Quiescent VBS Supply Current</td>
<td>VBS = 15 V, IN(UH, VH, WH) = 0 V</td>
<td>VBS - VS(U), VBS - VS(V), VBS - VS(W)</td>
<td>-</td>
<td>-</td>
<td>0.30</td>
<td>mA</td>
</tr>
<tr>
<td>IPBS</td>
<td>Operating VBS Supply Current</td>
<td>VDD = VBS = 15 V, fPWM = 20 kHz, Duty = 50%, Applied to one PWM Signal Input for High-Side</td>
<td>VBS - VS(U), VBS - VS(V), VBS - VS(W)</td>
<td>-</td>
<td>-</td>
<td>2.00</td>
<td>mA</td>
</tr>
<tr>
<td>VFOH</td>
<td>Fault Output Voltage</td>
<td>VSC = 0 V, VFO Circuit: 4.7 kΩ to 5 V Pull-up</td>
<td>VSC - COM</td>
<td>4.5</td>
<td>-</td>
<td>-</td>
<td>V</td>
</tr>
<tr>
<td>VFO</td>
<td>VSC = 1 V, VFO Circuit: 4.7 kΩ to 5 V Pull-up</td>
<td>-</td>
<td>0.5 V</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VSC(ref)</td>
<td>Short Circuit Trip Level</td>
<td>VDD = 15 V (Note 7)</td>
<td>CSC - COM</td>
<td>0.45</td>
<td>0.50</td>
<td>0.55</td>
<td>V</td>
</tr>
<tr>
<td>UVDDD</td>
<td>Supply Circuit Under- Voltage Protection</td>
<td>Detection Level</td>
<td>10.5</td>
<td>13.0</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UVDDR</td>
<td>Reset Level</td>
<td>11.0</td>
<td>13.5</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UVBSD</td>
<td>Detection Level</td>
<td>10.0</td>
<td>12.5</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UVBSR</td>
<td>Reset Level</td>
<td>10.5</td>
<td>13.0</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tFOD</td>
<td>Fault-Out Pulse Width</td>
<td>-</td>
<td>-</td>
<td>μs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V(IN(ON))</td>
<td>ON Threshold Voltage</td>
<td>Applied between IN(UH, VH, WH) - COM, IN(UL, VL, WL) - COM</td>
<td>-</td>
<td>2.6</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V(IN(OFF))</td>
<td>OFF Threshold Voltage</td>
<td>-</td>
<td>0.8</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RTH</td>
<td>Resistance of Thermistor</td>
<td>at TTH = 25°C (Note 8)</td>
<td>47</td>
<td>kΩ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>at TTH = 100°C</td>
<td>2.9</td>
<td>kΩ</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

7. Short–circuit current protection is functioning only at the low–sides.
8. TTH is the temperature of thermistor itself. To know case temperature (TC), please make the experiment considering your application.
Figure 5. R–T Curve of The Built–In Thermistor

BOOTSTRAP DIODE PART

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_F</td>
<td>Forward Voltage</td>
<td>I_F = 0.1 A, T_C = 25°C</td>
<td>–</td>
<td>2.5</td>
<td>–</td>
<td>V</td>
</tr>
<tr>
<td>t_rr</td>
<td>Reverse–Recovery Time</td>
<td>I_F = 0.1 A, dI_F / dt = 50 A / μs, T_J = 25°C</td>
<td>–</td>
<td>80</td>
<td>–</td>
<td>ns</td>
</tr>
</tbody>
</table>

NOTE: Built–in bootstrap diode includes around 15 Ω resistance characteristic.

Figure 6. Built–In Bootstrap Diode Characteristic
RECOMMENDED OPERATING CONDITIONS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{PN}</td>
<td>Supply Voltage</td>
<td>Applied between $P - N_U, N_V, N_W$</td>
<td>–</td>
<td>300</td>
</tr>
<tr>
<td>V_{DD}</td>
<td>Control Supply Voltage</td>
<td>Applied between $V_{DD(H)}, V_{DD(L)} - COM$</td>
<td>13.5</td>
<td>15.0</td>
</tr>
<tr>
<td>V_{BS}</td>
<td>High–Side Bias Voltage</td>
<td>Applied between $V_{B(U)} - V_{S(U)}, V_{B(V)} - V_{S(V)}, V_{B(W)} - V_{S(W)}$</td>
<td>13.0</td>
<td>15.0</td>
</tr>
<tr>
<td>$dV_{DD} / dt, dV_{BS} / dt$</td>
<td>Control Supply Variation</td>
<td>For each input signal</td>
<td>–1</td>
<td>–</td>
</tr>
<tr>
<td>t_{dead}</td>
<td>Blank Time for Preventing Arm – Short</td>
<td></td>
<td>1</td>
<td>–</td>
</tr>
<tr>
<td>f_{PWM}</td>
<td>PWM Input Signal</td>
<td>$-40^\circ C \leq T_C \leq 125^\circ C$, $-40^\circ C \leq T_J \leq 150^\circ C$</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>V_{SEN}</td>
<td>Voltage for Current Sensing</td>
<td>Applied between $N_U, N_V, N_W - COM$ (Including Surge–Voltage)</td>
<td>–4</td>
<td>–</td>
</tr>
<tr>
<td>$PW_{IN(ON)}$</td>
<td>Minimum Input Pulse Width</td>
<td>$V_{DD} = V_{BS} = 15 V$, $I_C \leq 15 A$, Wiring Inductance between N_U, V, W and DC Link $N < 10 nH$ (Note 9)</td>
<td>0.5</td>
<td>–</td>
</tr>
<tr>
<td>$PW_{IN(OFF)}$</td>
<td>Minimum Input Pulse Width</td>
<td>$V_{DD} = V_{BS} = 15 V$, $I_C \leq 30 A$, Wiring Inductance between N_U, V, W and DC Link $N < 10 nH$ (Note 9)</td>
<td>0.5</td>
<td>–</td>
</tr>
<tr>
<td>$PW_{IN(ON)}$</td>
<td>Minimum Input Pulse Width</td>
<td>$V_{DD} = V_{BS} = 15 V$, $I_C \leq 30 A$, Wiring Inductance between N_U, V, W and DC Link $N < 10 nH$ (Note 9)</td>
<td>1.2</td>
<td>–</td>
</tr>
<tr>
<td>$PW_{IN(OFF)}$</td>
<td>Minimum Input Pulse Width</td>
<td>$V_{DD} = V_{BS} = 15 V$, $I_C \leq 30 A$, Wiring Inductance between N_U, V, W and DC Link $N < 10 nH$ (Note 9)</td>
<td>1.2</td>
<td>–</td>
</tr>
<tr>
<td>T_J</td>
<td>Junction Temperature</td>
<td></td>
<td>–40</td>
<td>–</td>
</tr>
</tbody>
</table>

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

9. This product might not make right output response if input pulse width is less than the recommended value.

![Figure 7. Allowable Maximum Output Current](image)

NOTE: This allowable output current value is the reference data for the safe operation of this product. This may be different from the actual application and operating condition.

Figure 7. Allowable Maximum Output Current
MECHANICAL CHARACTERISTICS AND RATINGS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device Flatness</td>
<td>See Figure 8</td>
<td>0</td>
<td>–</td>
<td>+120</td>
<td>μm</td>
</tr>
<tr>
<td>Mounting Torque</td>
<td>Mounting Screw: M3</td>
<td>0.6</td>
<td>0.7</td>
<td>0.8</td>
<td>N/m</td>
</tr>
<tr>
<td></td>
<td>See Figure 9</td>
<td>6.2</td>
<td>7.1</td>
<td>8.1</td>
<td>kg/cm</td>
</tr>
<tr>
<td>Weight</td>
<td></td>
<td>–</td>
<td>11.00</td>
<td>–</td>
<td>g</td>
</tr>
</tbody>
</table>

Figure 8. Flatness Measurement Position

Figure 9. Mounting Screws Torque Order

NOTES:

10. Do not make over torque when mounting screws. Much mounting torque may cause ceramic cracks, as well as bolts and Al heat-sink destruction.

11. Avoid one-sided tightening stress. Figure 9 shows the recommended torque order for the mounting screws. Uneven mounting can cause the ceramic substrate damaged. The pre-screwing torque is set to 20 – 30% of maximum torque rating.
Time Charts of Protective Function

Figure 10. Under-Voltage Protection (Low-Side)

- **a1**: Control supply voltage rises: after the voltage rises UVDDR, the circuits start to operate when the next input is applied.
- **a2**: Normal operation: IGBT ON and carrying current.
- **a3**: Under-voltage detection (UVDDD).
- **a4**: IGBT OFF in spite of control input condition.
- **a5**: Fault output operation starts with a fixed pulse width.
- **a6**: Under-voltage reset (UVDDR).
- **a7**: Normal operation: IGBT ON and carrying current by triggering next signal from LOW to HIGH.

Figure 11. Under-Voltage Protection (High-Side)

- **b1**: Control supply voltage rises: after the voltage reaches UVBSR, the circuits start to operate when the next input is applied.
- **b2**: Normal operation: IGBT ON and carrying current.
- **b3**: Under-voltage detection (UVSSD).
- **b4**: IGBT OFF in spite of control input condition, but there is no fault output signal.
- **b5**: Under-voltage reset (UVSSR).
- **b6**: Normal operation: IGBT ON and carrying current by triggering next signal from LOW to HIGH.
Figure 12. Short−Circuit Current Protection (Low−Side Operation only)

- **c1**: Normal operation: IGBT ON and carrying current.
- **c2**: Short-circuit current detection (SC trigger).
- **c3**: All low−side IGBTs gate are hard interrupted.
- **c4**: All low−side IGBTs turn OFF.
- **c5**: Fault output operation starts with a fixed pulse width according to the condition of the external capacitor C\textsubscript{FOD}.
- **c6**: Input HIGH: IGBT ON state, but during the active period of fault output, the IGBT doesn’t turn ON.
- **c7**: Fault output operation finishes, but IGBT doesn’t turn on until triggering the next signal from LOW to HIGH.
- **c8**: Normal operation: IGBT ON and carrying current.

Input/Output Interface Circuit

NOTE: RC coupling at each input might change depending on the PWM control scheme used in the application and the wiring impedance of the application’s printed circuit board. The input signal section of the Motion SPM 45 product integrates 5 kΩ (typ.) pull−down resistor. Therefore, when using an external filtering resistor, please pay attention to the signal voltage drop at input terminal.

Figure 13. Recommended MCU I/O Interface Circuit
Figure 14. Typical Application Circuit

NOTES:
12. To avoid malfunction, the wiring of each input should be as short as possible (less than 2 – 3 cm).
13. VFO output is an open−drain type. This signal line should be pulled up to the positive side of the MCU or control power supply with a resistor that makes IFO up to 1 mA.
14. CSP15 of around seven times larger than bootstrap capacitor CBS is recommended.
15. Input signal is active−HIGH type. There is a 5 kΩ resistor inside the IC to pull down each input signal line to GND. RC coupling circuits is recommended for the prevention of input signal oscillation. RSCPS time constant should be selected in the range 50 ~ 150 ns (recommended RS = 100 kΩ, CPS = 1 nF).
16. To prevent errors of the protection function, the wiring around RF and CSC should be as short as possible.
17. In the short−circuit protection circuit, please select the RSCSC time constant in the range 1.5 ~ 2 μs. Do enough evaluaiton on the real system because short−circuit protection time may vary wiring pattern layout and value of the RSCSC time constant.
18. The connection between control GND line and power GND line which includes the NU, NV, NW must be connected to only one point. Please do not connect the control GND to the power GND by the broad pattern. Also, the wiring distance between control GND and power GND should be as short as possible.
19. Each capacitor should be mounted as close to the pins of the Motion SPM 45 product as possible.
20. To prevent surge destruction, the wiring between the smoothing capacitor and the P & GND pins should be as short as possible. The use of a high−frequency non−inductive capacitor of around 0.1 – 0.22 μF between the P and GND pins is recommended.
21. Relays are used in almost every systems of electrical equipment in home appliances. In these cases, there should be sufficient distance between the MCU and the relays.
22. The zener diode or transient voltage suppressor should be adopted for the protection of ICs from the surge destruction between each pair of control supply terminals (recommended zener diode is 22 V / 1 W, which has the lower zener impedance characteristic than about 15 Ω).
23. Please choose the electrolytic capacitor with good temperature characteristic in C BS. Also, choose 0.1 – 0.2 μF R−category ceramic capacitors with good temperature and frequency characteristics in C BSC.
PACKAGE MARKING AND ORDERING INFORMATION

<table>
<thead>
<tr>
<th>Device</th>
<th>Device Marking</th>
<th>Package</th>
<th>Shipping</th>
</tr>
</thead>
<tbody>
<tr>
<td>FNA41560T2</td>
<td>FNA41560T2</td>
<td>SPMAA–C26 / 26LD, PDD STD CERAMIC TYPE, LONG LEAD DUAL FORM TYPE (Pb–Free)</td>
<td>12 Units / Rail</td>
</tr>
</tbody>
</table>

SPM is registered trademark of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries.
MECHANICAL CASE OUTLINE
PACKAGE DIMENSIONS

SPMAA–C26 / 26LD, PDD STD CERAMIC TYPE, LONG LEAD DUAL FORM TYPE

CASE MODFC
ISSUE 0

DATE 31 JAN 2017

NOTES: UNLESS OTHERWISE SPECIFIED
A) THIS PACKAGE DOES NOT COMPLY
TO ANY CURRENT PACKAGING STANDARD
B) ALL DIMENSIONS ARE IN MILLIMETERS
C) DIMENSIONS ARE EXCLUSIVE OF BURRS,
MOLD FLASH, AND TIE BAR EXTRUSIONS
D) () IS REFERENCE

LAND PATTERN RECOMMENDATIONS

DOCUMENT NUMBER: 98AON13555G
DESCRIPTION: SPMAA–C26 / 26LD, PDD STD CERAMIC TYPE, LONG LEAD DUAL