To learn more about ON Semiconductor, please visit our website at www.onsemi.com

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor’s system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.
FMS6145
Low-Cost Five-Channel 4th-Order Standard Definition Video Filter Driver

Features
- Five 4th-order 8MHz (SD) filters
- Drives single, AC- or DC-coupled, video loads (2Vpp, 150Ω)
- Drives dual, AC- or DC-coupled, video loads (2Vpp, 75Ω)
- Transparent input clamping
- AC- or DC-coupled inputs
- AC- or DC-coupled outputs
- DC-coupled outputs eliminate AC-coupling capacitors
- 5V only
- Robust 8kV ESD protection
- Lead-free TSSOP-14 package

Applications
- Cable set-top boxes
- Satellite set-top boxes
- DVD players
- HDTV
- Personal Video Recorders (PVR)
- Video On Demand (VOD)

Description
The FMS6145 Low-Cost Video Filter (LCVF) is intended to replace passive LC filters and drivers with a low-cost integrated device. Five 4th-order filters provide improved image quality compared to typical 2nd or 3rd-order passive solutions.

The FMS6145 may be directly driven by a DC-coupled DAC output or an AC-coupled signal. Internal diode clamps and bias circuitry may be used if AC-coupled inputs are required (see Applications section for details).

The outputs can drive AC- or DC-coupled single (150Ω) or dual (75Ω) loads. DC coupling the outputs removes the need for output coupling capacitors. The input DC levels are offset approximately +280mV at the output (see Applications section for details).

Functional Block Diagram

Ordering Information

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Operating Temperature Range</th>
<th>Eco Status</th>
<th>Package</th>
<th>Packaging Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>FMS6145MTC14X</td>
<td>-40°C to +85°C</td>
<td>RoHS</td>
<td>TSSOP-14</td>
<td>Tape and Reel</td>
</tr>
</tbody>
</table>

For Fairchild’s definition of Eco Status, please visit: http://www.fairchildsemi.com/company/green/rohs_green.html.
FMS6145 – Low-Cost Five-Channel 4th-Order Standard Definition Video Filter Driver

Pin Configuration

Pin Assignments

<table>
<thead>
<tr>
<th>Pin #</th>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>IN1</td>
<td>Input</td>
<td>Video input, channel 1</td>
</tr>
<tr>
<td>2</td>
<td>IN2</td>
<td>Input</td>
<td>Video input, channel 2</td>
</tr>
<tr>
<td>3</td>
<td>IN3</td>
<td>Input</td>
<td>Video input, channel 3</td>
</tr>
<tr>
<td>4</td>
<td>VCC</td>
<td>Input</td>
<td>+5V supply, do not float</td>
</tr>
<tr>
<td>5</td>
<td>IN4</td>
<td>Input</td>
<td>Video input, channel 4</td>
</tr>
<tr>
<td>6</td>
<td>IN5</td>
<td>Input</td>
<td>Video input, channel 5</td>
</tr>
<tr>
<td>7, 8</td>
<td>NC</td>
<td></td>
<td>No Connect</td>
</tr>
<tr>
<td>9</td>
<td>OUT5</td>
<td>Output</td>
<td>Filtered video output, channel 5</td>
</tr>
<tr>
<td>10</td>
<td>OUT4</td>
<td>Output</td>
<td>Filtered video output, channel 4</td>
</tr>
<tr>
<td>11</td>
<td>GND</td>
<td>Output</td>
<td>Must be tied to ground, do not float</td>
</tr>
<tr>
<td>12</td>
<td>OUT3</td>
<td>Output</td>
<td>Filtered video output, channel 3</td>
</tr>
<tr>
<td>13</td>
<td>OUT2</td>
<td>Output</td>
<td>Filtered video output, channel 2</td>
</tr>
<tr>
<td>14</td>
<td>OUT1</td>
<td>Output</td>
<td>Filtered video output, channel 1</td>
</tr>
</tbody>
</table>
Absolute Maximum Ratings

The “Absolute Maximum Ratings” are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The “Recommended Operating Conditions” table defines the conditions for actual device operation. Functional operation under any of these conditions is NOT implied. Performance and reliability are guaranteed only if recommended operating conditions are not exceeded.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC Supply Voltage</td>
<td>-0.3</td>
<td>6</td>
<td>V</td>
</tr>
<tr>
<td>Analog and Digital I/O</td>
<td>-0.3</td>
<td>V_{CC} + 0.3</td>
<td>V</td>
</tr>
<tr>
<td>Output Channel - Any One Channel (Do Not Exceed)</td>
<td>50</td>
<td></td>
<td>mA</td>
</tr>
</tbody>
</table>

Reliability Information

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_{J}</td>
<td>Junction Temperature</td>
<td></td>
<td></td>
<td>150</td>
<td>°C</td>
</tr>
<tr>
<td>T_{STSG}</td>
<td>Storage Temperature Range</td>
<td>-65</td>
<td></td>
<td>+150</td>
<td>°C</td>
</tr>
<tr>
<td>T_{L}</td>
<td>Lead Temperature (Soldering, 10s)</td>
<td></td>
<td></td>
<td>300</td>
<td>°C</td>
</tr>
<tr>
<td>θ_{JA}</td>
<td>Thermal Resistance, JEDEC Standard Multi-layer Test Boards, Still Air</td>
<td>90</td>
<td></td>
<td></td>
<td>°C/W</td>
</tr>
</tbody>
</table>

Electrostatic Discharge Information

<table>
<thead>
<tr>
<th>Symbols</th>
<th>Parameter</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESD</td>
<td>Human Body Model, JESD22-A114</td>
<td>4</td>
<td>kV</td>
</tr>
<tr>
<td></td>
<td>Charged Device Model, JESD22-C101</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Recommended Operating Conditions

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_{A}</td>
<td>Operating Temperature Range</td>
<td>-40</td>
<td>+85</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>V_{CC}</td>
<td>V_{CC} Range</td>
<td>+4.75</td>
<td>+5.0</td>
<td>+5.25</td>
<td>V</td>
</tr>
</tbody>
</table>
DC Electrical Characteristics

$T_A = 25°C$, $V_{CC} = 5V$, $R_{SOURCE} = 37.5Ω$; all inputs are AC-coupled with $0.1\mu F$; all outputs are AC coupled with $220\mu F$ into $150Ω$ loads; unless otherwise noted.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_{CC}</td>
<td>Supply Current$^{(1)}$</td>
<td>FMS6145 (No Load)</td>
<td>30</td>
<td>46</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>V_{IN}</td>
<td>Video Input Voltage Range</td>
<td>Referenced to GND if DC-coupled</td>
<td>1.4</td>
<td>V_{pp}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PSRR</td>
<td>Power Supply Rejection</td>
<td>DC (All Channels)</td>
<td>-50</td>
<td></td>
<td>dB</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. 100% tested at 25°C.

AC Electrical Characteristics

$T_A = 25°C$, $V_{IN} = 1V_{pp}$, $V_{CC} = 5V$, $R_{SOURCE} = 37.5Ω$; all inputs are AC coupled with $0.1\mu F$; all outputs are AC-coupled with $220\mu F$ into $150Ω$ loads; unless otherwise noted.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_{V}</td>
<td>Channel Gain$^{(1)}$</td>
<td>All Channels</td>
<td>6.0</td>
<td>6.2</td>
<td>6.4</td>
<td>dB</td>
</tr>
<tr>
<td>f_{1dB}</td>
<td>-1dB Bandwidth$^{(1)}$</td>
<td>All Channels</td>
<td>4.5</td>
<td>6.7</td>
<td></td>
<td>MHz</td>
</tr>
<tr>
<td>f_{c}</td>
<td>-3dB Bandwidth</td>
<td>All Channels</td>
<td>7.9</td>
<td></td>
<td></td>
<td>MHz</td>
</tr>
<tr>
<td>f_{BB}</td>
<td>Attenuation (Stopband Reject)</td>
<td>All Channels at $f = 27MHz$</td>
<td>48</td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>dG</td>
<td>Differential Gain</td>
<td>All Channels</td>
<td>0.3</td>
<td></td>
<td></td>
<td>%</td>
</tr>
<tr>
<td>$d\phi$</td>
<td>Differential Phase</td>
<td>All Channels</td>
<td>0.6</td>
<td></td>
<td></td>
<td>°</td>
</tr>
<tr>
<td>THD</td>
<td>Output Distortion (All Channels)</td>
<td>$V_{OUT} = 1.8V_{pp}$, 1MHz</td>
<td>0.4</td>
<td></td>
<td></td>
<td>%</td>
</tr>
<tr>
<td>X_{TALK}</td>
<td>Crosstalk (Channel-to-Channel)</td>
<td>at 1MHz</td>
<td>-60</td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>SNR</td>
<td>Signal-to-Noise Ratio</td>
<td>All Channels, NTC-7 Weighting: 100kHz to 4.2MHz</td>
<td>75</td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>t_{pd}</td>
<td>Propagation Delay</td>
<td>Delay from Input-to-Output, 4.5MHz</td>
<td>59</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
</tbody>
</table>

Notes:
1. 100% tested at 25°C.
Typical Performance Characteristics

$T_A = 25^\circ C, V_{CC} = 5V, R_{SOURCE} = 37.5\Omega$; all inputs AC coupled with 0.1μF; all outputs are AC coupled with 220μF into 150Ω loads; unless otherwise noted.

Figure 1. Frequency Response

Figure 2. Group Delay vs. Frequency

Figure 3. Noise vs. Frequency

Figure 4. Differential Gain

Figure 5. Differential Phase
Typical Application Diagrams

The following circuit may be used for direct DC-coupled drive by DACs with an output voltage range of 0V to 1.4V. AC-coupled or DC-coupled outputs may be used with AC-coupled outputs, offering slightly lower power dissipation.

Figure 6. Typical Application Diagram
Application Information

Application Circuits

The FMS6145 Low Cost Video Filter (LCVF) provides 6dB gain from input to output. In addition, the input is slightly offset to optimize the output driver performance. The offset is held to the minimum required value to decrease the standing DC-current into the load. Typical voltage levels are shown in the diagram below:

![Diagram of voltage levels](image)

There is a 280mV offset from the DC input level to the DC output level. $V_{OUT} = 2 \cdot V_{IN} + 280mV$.

Figure 7. Typical Voltage Levels

For a DC-coupled DAC drive with DC-coupled outputs, use the configuration in Figure 9.

![Figure 9. DC-Coupled Inputs and Outputs](image)

Alternatively, if the DAC's average DC output level causes the signal to exceed the range of 0V to 1.4V, it can be AC coupled as shown in Figure 10.

![Figure 10. AC-Coupled Inputs, DC-Coupled Outputs](image)

When the FMS6145 is driven by an unknown external source or a SCART switch with its own clamping circuitry, the inputs should be AC coupled as shown in Figure 11.

![Figure 11. SCART with DC-Coupled Outputs](image)
The same method can be used for biased signals, with the addition of a pull-up resistor to make sure the clamp never operates. The internal pull-down resistance is 800kΩ ±20%, so the external resistance should be 7.5MΩ to set the DC level to 500mV; as shown in Figure 12.

Figure 12. Biased SCART with DC-Coupled Outputs

The same circuits can be used with AC-coupled outputs if desired.

Note: The video tilt or line time distortion is dominated by the AC-coupling capacitor. The value may need to be increased beyond 220μF to obtain satisfactory operation in some applications.

Power Dissipation

The FMS6145 output drive configuration must be considered when calculating overall power dissipation. Care must be taken not to exceed the maximum die junction temperature. The following example can be used to calculate the FMS6146’s power dissipation and internal temperature rise.

\[T_j = T_A + P_d \cdot q_{JA} \]
EQ. 1

where:
- \(P_d = P_{CH1} + P_{CH2} + P_{CH3} \)
- \(P_{CHx} = VCC \cdot ICH - \left(\frac{V_o^2}{RL} \right) \)
- \(ICH = \frac{ICC}{3} + \frac{V_o}{RL} \)
- \(V_o = 2VIN + 0.280V \)
- \(VIN = \text{RMS value of input signal} \)
- \(ICC = 30mA \)
- \(VCC = 5V \)
- \(RL = \text{channel load resistance} \)

Board layout can also affect thermal characteristics. Refer to the **Layout Considerations** section for details.

The FMS6145 is specified to operate with output currents typically less than 50mA, more than sufficient for a dual (75Ω) video load. Internal amplifiers are current limited to a maximum of 100mA and should withstand brief-duration short-circuit conditions; this capability is not guaranteed.
Layout Considerations

General layout and supply bypassing play major roles in high-frequency performance and thermal characteristics. Fairchild offers a demonstration board, FMS6145DEMO, to guide layout and aid device testing and characterization. The FMS6145DEMO is a four-layer board with full power and ground planes. Following this layout configuration provides the optimum performance and thermal characteristics. For optimum results, follow the guidelines below as a basis for high-frequency layout:

- Include 1μF and 0.1μF ceramic bypass capacitors.
- Place the 1μF capacitor within 0.75 inches of the power pin.
- Place the 0.1μF capacitor within 0.1 inches of the power pin.
- For multi-layer boards, use a large ground plane to help dissipate heat.
- For two-layer boards, use a ground plane that extends beyond the device by at least 0.5 inches.
- Minimize all trace lengths to reduce series inductances.

Output Considerations

The FMS6145 outputs are DC offset from the input by 150mV. Therefore, \(V_{\text{OUT}} = 2 \cdot V_{\text{IN}} + 150 \text{mV} \). This offset is required to obtain optimal performance from the output driver and is held at the minimum value to decrease the standing DC current into the load. Since the FMS6145 has a 2x (6dB) gain, the output is typically connected via a 75Ω-series back-matching resistor, followed by the 75Ω video cable. Due to the inherent divide by two of this configuration, the blanking level at the load of the video signal is always less than 1V. When AC-coupling the output, ensure that the coupling capacitor of choice passes the lowest frequency content in the video signal and that line time distortion (video tilt) is kept as low as possible.

The selection of the coupling capacitor is a function of the subsequent circuit input impedance and the leakage current of the input being driven. To obtain the highest quality output video signal, the series termination resistor must be placed as close to the output pin as possible. This reduces the parasitic capacitance and inductance effect on the output driver. The distance from the device pin to the series termination resistor should be no greater than 0.1 inches.

Figure 16. Distance from Device Pin to Series Termination Resistor
Physical Dimensions

NOTES:

A. CONFORMS TO JEDEC REGISTRATION MO-153, VARIATION AB, REF NOTE 6
B. DIMENSIONS ARE IN MILLIMETERS
C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS
D. DIMENSIONING AND TOLERANCES PER ANSI Y14.5M, 1982
E. LANDPATTERN STANDARD: SOP65P640X110-14M
F. DRAWING FILE NAME: MTC14REV6

Figure 17. TSSOP-14 Package

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings:
http://www.fairchildsemi.com/packaging/
TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

AccuPower®, SiteNavTM, CorePower™, CrossVolt™, CTL™, Current Transfer Logic™, ECoP®,
EfficientMax™, EZSTRA™, EZSTMCH™, F5™,
Fairchild®, Fairchild Semiconductor®, FACQ Quiet Sense™, FACT®, FASE®,
FastCom®, FETOchic®, Flanker™, FPP™,
FMS™, FPA™, FPSTM, FXSTM, FRET™,
Global Power Resource™, Green FPS™, Green FPS® e-Series™,
Gxwave™, GTOP™, Intel MAX™,
IsolatorMax™, MegaBuck™, MICROCOUPLER™,
MicroFET™, MilliDrive™, OPTOCOIL™,
OPTOPLANAR™, PowerOptics™,
PowerSPI™, Power SPI™,
PowerTrench®, PowerXSTM,
Programmable Active Drop™, OFET™,
OS™, Quiet Series™, RapidConfigure™,
Saving our world, TrueWDM™ at a time™,
SignalMax™, SmartMax™, SMART START™,
STEAHM™, SuperFET™,
SuperFET™ 3, SuperFET™ 5, SuperFET™ 6,
SuperFET™ 8, SupremO™, SyncFET™,
Sync-Loc™, SYSTM™,
Investing Value™,
UHC™, Ultra FRET™, UniFET™,
VisionMax™, X5™.

* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FARICHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HERETO TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FARICHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD’S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN. WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

Fairchild’s products are not authorized for use as CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.

2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation’s Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to verify the status of their parts by using direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms

<table>
<thead>
<tr>
<th>Datasheet Identification</th>
<th>Product Status</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advance Information</td>
<td>Formative In Design</td>
<td>Datasheet contains the design specifications for the product development. Specifications may change in any manner without notice.</td>
</tr>
<tr>
<td>Preliminary</td>
<td>First Production</td>
<td>Datasheet contains preliminary data, supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.</td>
</tr>
<tr>
<td>No Identification Needed</td>
<td>Full Production</td>
<td>Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.</td>
</tr>
<tr>
<td>Obsolete</td>
<td>Not In Production</td>
<td>Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.</td>
</tr>
</tbody>
</table>

Rev. M2

© 2006 Fairchild Semiconductor Corporation

FMS6145 • Rev. 2.0.6

www.fairchildsemi.com