Half-Bridge LLC Resonant Control IC for Lighting

FLS-XS Series

Description
The FLS-XS series of general lighting power controllers includes highly integrated power switches for medium to high-power lumens applications. Offering everything necessary to build a reliable and robust half-bridge resonant converter, the FLS-XS series simplifies designs and improves productivity, while improving performance. The FLS-XS series combines power MOSFETs with fast-recovery type body diodes, a high-side gate-drive circuit, an accurate current controlled oscillator, frequency limit circuit, soft-start, and built-in protection functions. The high-side gate-drive circuit has common-mode noise cancellation capability, which guarantees stable operation with excellent noise immunity. The fast-recovery body diode of the MOSFETs improves reliability against abnormal operation conditions, while minimizing the effect of reverse recovery. Using zero voltage switching (ZVS) dramatically reduces the switching losses and significantly improves efficiency. ZVS also reduces switching noise noticeably, which allows a small-sized Electromagnetic Interference (EMI) filter.

The FLS-XS series can be applied to resonant converter topologies such as series resonant, parallel resonant, and LLC resonant converters.

Features
- Variable Frequency Control with 50% Duty Cycle for Half-Bridge Resonant Converter Topology
- High Efficiency through Zero Voltage Switching (ZVS)
- Internal UniFET™ with Fast-Recovery Body Diode
- Fixed Dead Time (350 ns) Optimized for MOSFETs
- Up to 300 kHz Operating Frequency
- Auto-Restart Operation for All Protections with External LVCC
- Protection Functions: Over-Voltage Protection (OVP), Over-Current Protection (OCP), Abnormal Over-Current Protection (AOCP), Internal Thermal Shutdown (TSD)
- These are Pb-Free Devices

Applications
- General LED Lighting Power
- Industrial, Commercial, and Residential LED Lighting Fixtures
- Outdoor Lighting: Street, Roadway, Parking, Construction and Ornamental LED Lighting Fixtures

MARKING DIAGRAM

ORDERING INFORMATION
See detailed ordering and shipping information on page 2 of this data sheet.
ORDERING INFORMATION

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Package</th>
<th>Operating Junction Temperature</th>
<th>$R_{DS(ON_MAX)}$</th>
<th>Maximum Output Power without Heatsink ($V_{IN} = 350 \text{ V} \sim 400 \text{ V}$) (Notes 1, 2)</th>
<th>Maximum Output Power with Heatsink ($V_{IN} = 350 \text{ V} \sim 400 \text{ V}$) (Notes 1, 2)</th>
<th>Shipping</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLS2100XS</td>
<td>9–SIP (Pb–Free)</td>
<td>−40°C to 130°C</td>
<td>0.51 Ω</td>
<td>180 W</td>
<td>400 W</td>
<td>475 Units / Tube</td>
</tr>
<tr>
<td>FLS1800XS</td>
<td></td>
<td></td>
<td>0.95 Ω</td>
<td>120 W</td>
<td>260 W</td>
<td></td>
</tr>
<tr>
<td>FLS1700XS</td>
<td></td>
<td></td>
<td>1.25 Ω</td>
<td>100 W</td>
<td>200 W</td>
<td></td>
</tr>
<tr>
<td>FLS1600XS</td>
<td></td>
<td></td>
<td>1.55 Ω</td>
<td>80 W</td>
<td>160 W</td>
<td></td>
</tr>
</tbody>
</table>

1. The junction temperature can limit the maximum output power.
2. Maximum practical continuous power in an open-frame design at 50°C ambient.

Application Circuit Diagram

![Diagram](image-url)

Figure 1. Typical Application Circuit for LLC Resonant Half-Bridge Converter
Block Diagram

Figure 2. Functional Block Diagram
PIN DEFINITIONS

<table>
<thead>
<tr>
<th>Pin #</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>V_{DL}</td>
<td>This is the drain of the high-side MOSFET, typically connected to the input DC link voltage.</td>
</tr>
<tr>
<td>2</td>
<td>AR</td>
<td>This pin is for discharging the external soft-start capacitor when any protections are triggered. When the voltage of this pin drops to 0.2 V, all protections are reset and the controller starts to operate again.</td>
</tr>
<tr>
<td>3</td>
<td>R_T</td>
<td>This pin programs the switching frequency. Typically, an opto-coupler is connected to control the switching frequency for the output voltage regulation.</td>
</tr>
<tr>
<td>4</td>
<td>CS</td>
<td>This pin senses the current flowing through the low-side MOSFET. Typically, negative voltage is applied on this pin.</td>
</tr>
<tr>
<td>5</td>
<td>SG</td>
<td>This pin is the control ground.</td>
</tr>
<tr>
<td>6</td>
<td>PG</td>
<td>This pin is the power ground. This pin is connected to the source of the low-side MOSFET.</td>
</tr>
<tr>
<td>7</td>
<td>LV_{CC}</td>
<td>This pin is the supply voltage of the control IC.</td>
</tr>
<tr>
<td>8</td>
<td>NC</td>
<td>No connection</td>
</tr>
<tr>
<td>9</td>
<td>HV_{CC}</td>
<td>This is the supply voltage of the high-side gate-drive circuit IC.</td>
</tr>
<tr>
<td>10</td>
<td>V_{CTR}</td>
<td>This is the drain of the low-side MOSFET. Typically, a transformer is connected to this pin.</td>
</tr>
</tbody>
</table>

www.onsemi.com
ABSOLUTE MAXIMUM RATINGS (TA = 25°C unless otherwise specified)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>VDS</td>
<td>Maximum Drain–to–Source Voltage (VDL–VCTR and VCTR–PG)</td>
<td>500</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>LVCC</td>
<td>Low–Side Supply Voltage</td>
<td>–0.3</td>
<td>25.0</td>
<td>V</td>
</tr>
<tr>
<td>HVCC to VCTR</td>
<td>High–Side VCC Pin to Low–Side Drain Voltage</td>
<td>–0.3</td>
<td>25.0</td>
<td>V</td>
</tr>
<tr>
<td>HVCC</td>
<td>High–Side Floating Supply Voltage</td>
<td>–0.3</td>
<td>525.0</td>
<td>V</td>
</tr>
<tr>
<td>VAR</td>
<td>Auto–Restart Pin Input Voltage</td>
<td>–0.3</td>
<td>LVCC</td>
<td>V</td>
</tr>
<tr>
<td>VCS</td>
<td>Current–Sense (CS) Pin Input Voltage</td>
<td>–5.0</td>
<td>1.0</td>
<td>V</td>
</tr>
<tr>
<td>VRT</td>
<td>R<sub>T</sub> Pin Input Voltage</td>
<td>–0.3</td>
<td>5.0</td>
<td>V</td>
</tr>
<tr>
<td>dVCTR/dt</td>
<td>Allowable Low–Side MOSFET Drain Voltage Slew Rate</td>
<td>50</td>
<td></td>
<td>V/ns</td>
</tr>
<tr>
<td>P_D</td>
<td>Total Power Dissipation (Note 3)</td>
<td>FLS2100XS</td>
<td>12.0</td>
<td>W</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FLS1800XS</td>
<td>11.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>FLS1700XS</td>
<td>11.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>FLS1600XS</td>
<td>11.5</td>
<td></td>
</tr>
<tr>
<td>T_J</td>
<td>Maximum Junction Temperature (Note 4)</td>
<td>+150</td>
<td></td>
<td>°C</td>
</tr>
<tr>
<td></td>
<td>Recommended Operating Junction Temperature (Note 4)</td>
<td>–40</td>
<td>+130</td>
<td></td>
</tr>
<tr>
<td>T_STG</td>
<td>Storage Temperature Range</td>
<td>–55</td>
<td>+150</td>
<td>°C</td>
</tr>
</tbody>
</table>

MOSFET Section

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_DRG</td>
<td>Drain Gate Voltage (R<sub>GS</sub> = 1 MΩ)</td>
<td>500</td>
<td>V</td>
</tr>
<tr>
<td>V_GS</td>
<td>Gate Source (GND) Voltage</td>
<td>±30</td>
<td>V</td>
</tr>
<tr>
<td>I_DM</td>
<td>Drain Current Pulsed (Note 5)</td>
<td>FLS2100XS</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FLS1800XS</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FLS1700XS</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FLS1600XS</td>
<td>18</td>
</tr>
<tr>
<td>I_D</td>
<td>Continuous Drain Current</td>
<td>FLS2100XS</td>
<td>T<sub>C</sub> = 25°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FLS2100XS</td>
<td>T<sub>C</sub> = 100°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FLS1800XS</td>
<td>T<sub>C</sub> = 25°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FLS1800XS</td>
<td>T<sub>C</sub> = 100°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FLS1700XS</td>
<td>T<sub>C</sub> = 25°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FLS1700XS</td>
<td>T<sub>C</sub> = 100°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FLS1600XS</td>
<td>T<sub>C</sub> = 25°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FLS1600XS</td>
<td>T<sub>C</sub> = 100°C</td>
</tr>
</tbody>
</table>

Package Section

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Torque</td>
<td>Recommended Screw Torque</td>
<td>5 – 7</td>
<td>kgf cm</td>
</tr>
</tbody>
</table>

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

3. Per MOSFET when both MOSFETs are conducting.
4. The maximum value of the recommended operating junction temperature is limited by thermal shutdown.
5. Pulse width is limited by maximum junction temperature.

THERMAL CHARACTERISTICS (TA = 25°C unless otherwise specified)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Junction–to–Case Center Thermal Impedance (Both MOSFETs Conducting)</td>
<td>FLS2100XS</td>
<td>10.44</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FLS1800XS</td>
<td>10.68</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FLS1700XS</td>
<td>10.79</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FLS1600XS</td>
<td>10.89</td>
</tr>
</tbody>
</table>

www.onsemi.com
ELECTRICAL CHARACTERISTICS

(T_A = 25°C unless otherwise specified)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Condition</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOSFET Section</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BV_DSS</td>
<td>Drain–to–Source Breakdown Voltage</td>
<td>$I_D = 200 \mu A, T_A = 25^\circ C$</td>
<td>500</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$I_D = 200 \mu A, T_A = 125^\circ C$</td>
<td>540</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R_DS(ON)</td>
<td>On–State Resistance</td>
<td>FLS2100XS: $V_{GS} = 10 V, I_D = 6.0 A$</td>
<td>0.41</td>
<td>0.51</td>
<td></td>
<td>Ω</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FLS1800XS: $V_{GS} = 10 V, I_D = 3.0 A$</td>
<td>0.77</td>
<td>0.95</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>FLS1700XS: $V_{GS} = 10 V, I_D = 2.0 A$</td>
<td>1.00</td>
<td>1.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>FLS1600XS: $V_{GS} = 10 V, I_D = 2.25 A$</td>
<td>1.25</td>
<td>1.55</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tr</td>
<td>Body Diode Reverse Recovery Time (Note 6)</td>
<td>FLS2100XS: $V_{GS} = 0 V, I_{Diode} = 10.5 A, \frac{dI_{Diode}}{dt} = 100 A/\mu s$</td>
<td>120</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FLS1800XS: $V_{GS} = 0 V, I_{Diode} = 7.0 A, \frac{dI_{Diode}}{dt} = 100 A/\mu s$</td>
<td>160</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>FLS1700XS: $V_{GS} = 0 V, I_{Diode} = 6.0 A, \frac{dI_{Diode}}{dt} = 100 A/\mu s$</td>
<td>160</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>FLS1600XS: $V_{GS} = 0 V, I_{Diode} = 5.0 A, \frac{dI_{Diode}}{dt} = 100 A/\mu s$</td>
<td>65</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supply Section</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ILK</td>
<td>Offset Supply Leakage Current</td>
<td>$HVCC = V_CT = 500 V$</td>
<td>50</td>
<td></td>
<td></td>
<td>μA</td>
</tr>
<tr>
<td>IQHVCC</td>
<td>Quiescent HVCC Supply Current</td>
<td>$(HV_CCUV+) – 0.1 V$</td>
<td>50</td>
<td>120</td>
<td></td>
<td>μA</td>
</tr>
<tr>
<td>IQLVCC</td>
<td>Quiescent LVCC Supply Current</td>
<td>$(LV_CCUV+) – 0.1 V$</td>
<td>100</td>
<td>200</td>
<td></td>
<td>μA</td>
</tr>
<tr>
<td>IQHVCC</td>
<td>Operating HVCC Supply Current (RMS Value)</td>
<td>$f_{OSC} = 100 kHz$</td>
<td>6</td>
<td>9</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>IQLVCC</td>
<td>Operating LVCC Supply Current (RMS Value)</td>
<td>$f_{OSC} = 100 kHz$</td>
<td>100</td>
<td>200</td>
<td></td>
<td>μA</td>
</tr>
<tr>
<td>UVLO Section</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LV_CCUV+</td>
<td>LVCC Supply Under–Voltage Positive–Going Threshold (LVCC Start)</td>
<td>11.2</td>
<td>12.5</td>
<td>13.8</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>LV_CCUV-</td>
<td>LVCC Supply Under–Voltage Negative–Going Threshold (LVCC Stop)</td>
<td>8.9</td>
<td>10.0</td>
<td>11.1</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>LV_CCUVH</td>
<td>LVCC Supply Under–Voltage Hysteresis</td>
<td>2.50</td>
<td></td>
<td></td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>HV_CCUV+</td>
<td>HVCC Supply Under–Voltage Positive–Going Threshold (HVCC Start)</td>
<td>8.2</td>
<td>9.2</td>
<td>10.2</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>HV_CCUVH</td>
<td>HVCC Supply Under–Voltage Hysteresis</td>
<td>7.8</td>
<td>8.7</td>
<td>9.6</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Oscillator & Feedback Section</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VR_T</td>
<td>V–I Converter Threshold Voltage</td>
<td>$R_T = 5.2 k\Omega$</td>
<td>1.5</td>
<td>2.0</td>
<td>2.5</td>
<td>V</td>
</tr>
<tr>
<td>fOSC</td>
<td>Output Oscillation Frequency</td>
<td>94</td>
<td>100</td>
<td>106</td>
<td>kHz</td>
<td></td>
</tr>
<tr>
<td>DC</td>
<td>Output Duty Cycle</td>
<td>48</td>
<td>50</td>
<td>52</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>f_SS</td>
<td>Internal Soft–Start Initial Frequency</td>
<td>$f_{SS} = f_{OSC} + 40 kHz, R_T = 5.2 k\Omega$</td>
<td>140</td>
<td></td>
<td></td>
<td>kHz</td>
</tr>
<tr>
<td>t_SS</td>
<td>Internal Soft–Start Time</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>ms</td>
<td></td>
</tr>
</tbody>
</table>
ELECTRICAL CHARACTERISTICS \((T_A = 25^\circ C \text{ unless otherwise specified}) \) (continued)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Condition</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{CshH})</td>
<td>Beginning Voltage to Discharge (C_{SS})</td>
<td></td>
<td>0.9</td>
<td>1.0</td>
<td>1.1</td>
<td>V</td>
</tr>
<tr>
<td>(V_{CsslL})</td>
<td>Beginning Voltage to Charge (C_{SS}) and Restart</td>
<td></td>
<td>0.16</td>
<td>0.20</td>
<td>0.24</td>
<td>V</td>
</tr>
<tr>
<td>(V_{OVP})</td>
<td>(LVCC) Over-Voltage Protection</td>
<td>(LVCC > 21 \text{ V})</td>
<td>21</td>
<td>23</td>
<td>25</td>
<td>V</td>
</tr>
<tr>
<td>(V_{AOCP})</td>
<td>AOCP Threshold Voltage</td>
<td></td>
<td>-1.0</td>
<td>-0.9</td>
<td>-0.8</td>
<td>V</td>
</tr>
<tr>
<td>(t_{BAO})</td>
<td>AOCP Blanking Time (Note 6)</td>
<td>(V_{CS} < V_{AOCP})</td>
<td>50</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>(V_{OCP})</td>
<td>OCP Threshold Voltage</td>
<td></td>
<td>-0.64</td>
<td>-0.58</td>
<td>-0.52</td>
<td>V</td>
</tr>
<tr>
<td>(t_{BO})</td>
<td>OCP Blanking Time (Note 6)</td>
<td>(V_{CS} < V_{DCP})</td>
<td>1.0</td>
<td>1.5</td>
<td>2.0</td>
<td>(\mu \text{S})</td>
</tr>
<tr>
<td>(T_{SD})</td>
<td>Thermal Shutdown Temperature (Note 6)</td>
<td></td>
<td>+120</td>
<td>+135</td>
<td>+150</td>
<td>(^\circ \text{C})</td>
</tr>
</tbody>
</table>

Protection Section

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

6. This parameter, although guaranteed by design, is not tested in production.

7. These parameters, although guaranteed, are tested only in EDS (wafer test) process.
TYPICAL PERFORMANCE CHARACTERISTICS
(These characteristic graphs are normalized at $T_A = 25^\circ$C)

Figure 4. Low–Side MOSFET Duty Cycle vs. Temperature

Figure 5. Switching Frequency vs. Temperature

Figure 6. High–Side VCC (HVCC) Start vs. Temperature

Figure 7. High–Side VCC (HVCC) Stop vs. Temperature

Figure 8. Low–Side VCC (LVCC) Start vs. Temperature

Figure 9. Low–Side VCC (LVCC) Stop vs. Temperature
TYPICAL PERFORMANCE CHARACTERISTICS
(These characteristic graphs are normalized at $T_A = 25^\circ C$) (continued)

Figure 10. $LVCC$ OVP Voltage vs. Temperature

Figure 11. R_T Voltage vs. Temperature

Figure 12. $VCssL$ vs. Temperature

Figure 13. $VCssH$ vs. Temperature

Figure 14. OCP Voltage vs. Temperature
Functional Description

Basic Operation.

FLS−XS series is designed to drive high−side and low−side MOSFETs complementarily with 50% duty cycle. A fixed dead time of 350 ns is introduced between consecutive transitions, as shown in Figure 15.

Internal Oscillator:

FLS−XS series employs a current−controlled oscillator, as shown in Figure 16. Internally, the voltage of the RT pin is regulated at 2 V and the charging / discharging current for the oscillator capacitor, C_T, is obtained by copying the current flowing out of the RT pin (I_CTC) using a current mirror. Therefore, the switching frequency increases as I_CTC increases.

Frequency Setting:

Figure 17 shows the typical voltage gain curve of a resonant converter, where the gain is inversely proportional to the switching frequency in the ZVS region. The output voltage can be regulated by modulating the switching frequency. Figure 18 shows the typical circuit configuration for the RT pin, where the opto−coupler transistor is connected to the RT pin to modulate the switching frequency.

The minimum switching frequency is determined as:

\[
 f_{\text{min}} = \frac{5.2 \, \text{k}\Omega}{R_{\text{min}}} \times 100 \, \text{kHz} \quad \text{(eq. 1)}
\]

Assuming the saturation voltage of opto−coupler transistor is 0.2 V, the maximum switching frequency is determined as:

\[
 f_{\text{max}} = \frac{5.2 \, \text{k}\Omega + 4.68 \, \text{k}\Omega}{R_{\text{min}}} \times 100 \, \text{kHz} \quad \text{(eq. 2)}
\]

To prevent excessive inrush current and overshoot of output voltage during startup, increase the voltage gain of the resonant converter progressively. Since the voltage gain of the resonant converter is inversely proportional to the switching frequency, the soft−start is implemented by sweeping down the switching frequency from an initial high frequency (f_{ISS}) until the output voltage is established. The soft−start circuit is made by connecting R−C series network on the RT pin, as shown in Figure 18. FLS−XS series also has a 3 ms internal soft−start to reduce the current overshoot during the initial cycles, which adds 40 kHz to the initial frequency of the external soft−start circuit, as shown in Figure 19. The initial frequency of the soft−start is given as:

\[
 f_{\text{ISS}} = \frac{5.2 \, \text{k}\Omega + 5.2 \, \text{k}\Omega}{R_{\text{SS}}} \times 100 + 40 \, \text{kHz} \quad \text{(eq. 3)}
\]
It is typical to set the initial frequency of soft-start two to three times the resonant frequency \(f_0 \) of the resonant network. The soft-start time is three to four times the RC time constant. The RC time constant is:

\[
\tau = R_{SS} \cdot C_{SS} \tag{eq. 4}
\]

![Figure 19. Frequency Sweeping of Soft-Start](image)

Self Auto-Restart:

The FLS–XS series can restart automatically even when any built-in protections are triggered with external supply voltage. As can be seen in Figure 20 and Figure 21, once a protection is triggered, the M1 switch turns on and the V–I converter is disabled. \(C_{SS} \) starts to discharge until \(V_{CSS} \) across \(C_{SS} \) drops to \(V_{CSSL} \). Then, all protections are reset, M1 turns off, and the V–I converter resumes. The FLS–XS starts switching again with soft-start. If the protections occur while \(V_{CSS} \) is under \(V_{CSSL} \) and \(V_{CSSH} \) level, the switching is terminated immediately, \(V_{CSS} \) continues to increase until reaching \(V_{CSSH} \), then \(C_{SS} \) is discharged by M1.

![Figure 20. Frequency Control Circuit](image)

After protections trigger, FLS–XS is disabled during the stop–time, \(t_{stop} \), where \(V_{CSS} \) decreases and reaches to \(V_{CSSL} \). The stop–time of FLS–XS can be estimated as:

\[
t_{STOP} = C_{SS} \cdot \frac{1}{R_{SS} + R_{MIN}} \cdot 5 \text{kΩ} \tag{eq. 5}
\]

![Figure 21. Self Auto-Restart Operation](image)

The soft-start time \(t_{S/S} \) can be set from Equation 4.

Protection Circuits:

The FLS–XS series has several self-protective functions, such as Over–Current Protection (OCP), Abnormal Over–Current Protection (AOCP), Over–Voltage Protection (OVP), and Thermal Shutdown (TSD). These protections are auto-restart-mode protections, as shown in Figure 22.

Once a fault condition is detected, switching is terminated and the MOSFETs remain off. When \(LV_{CC} \) falls to the \(LV_{CC} \) stop voltage of 10 V or AR signal is HIGH, the protection is reset. The FLS–XS resumes normal operation when \(LV_{CC} \) reaches the start voltage of 12.5 V.

![Figure 22. Protection Blocks](image)

Over–Current Protection (OCP): When the sensing pin voltage drops below \(-0.58 \text{ V}\), OCP is triggered and the MOSFETs remain off. This protection has a shutdown time delay of 1.5 \(\mu \text{s} \) to prevent premature shutdown during startup.

Abnormal Over–Current Protection (AOCP): If the secondary rectifier diodes are shorted, large current with extremely high \(\text{di/dt} \) can flow through the MOSFETs before OCP is triggered. AOCP is triggered without shutdown delay if the sensing pin voltage drops below \(-0.9 \text{ V}\).
Over–Voltage Protection (OVP): When the LVCC reaches 23 V, OVP is triggered. This protection is used when auxiliary winding of the transformer to supply VCC to the power switch is utilized.

Thermal Shutdown (TSD): Having the MOSFETs and the control IC in one package makes it easier for the control IC to detect the abnormal over–temperature of the MOSFETs. If the temperature exceeds approximately 130°C, thermal shutdown triggers.

Current Sensing Using a Resistor:

FLS–XS series senses drain current as a negative voltage, as shown in Figure 23 and Figure 24. Half–wave sensing allows low power dissipation in the sensing resistor; while full–wave sensing has less switching noise in the sensing signal.

PCB Layout Guidelines:

Duty imbalance problems may occur due to the radiated noise from the main transformer, the inequality of the secondary side–leakage inductances of main transformer, and so on. This is one of the reasons that the control components in the vicinity of RT pin are enclosed by the primary current flow pattern on PCB layout. The direction of the magnetic field on the components caused by the primary current flow is changed when the high– and low–side MOSFET turn on by turns. The magnetic fields with opposite directions induce a current through, into, or out of the RT pin, which changes the turn–on duration of each MOSFET. It is strongly recommended to separate the control components in the vicinity of RT pin from the primary current flow pattern on PCB layout. Figure 25 shows an example for the duty–balanced case.

Figure 23. Half–Wave Sensing

Figure 24. Full–Wave Sensing

Figure 25. Example for Duty Balancing