

Field Stop Trench IGBT with Soft Fast Recovery Diode 120 A, 650 V

FGY120T65SPD

FGY120T65SPD offers very low conduction and switch losses for a high efficiency operation in various applications, rugged transient reliability and low EMI.

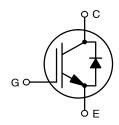
Meanwhile, this part also offers an advantage of outstanding parallel operation performance with balance current sharing.

Features

- Very Low Saturation Voltage: $V_{CE(Sat)} = 1.6 \text{ V (Typ.)} @ I_C = 120 \text{ A}$
- Maximum Junction Temperature: $T_I = 175^{\circ}C$
- Positive Temperature Co-efficient for Easy Parallel Operating
- Tight Parameter Distribution
- High Input Impedance
- 100% of the Parts are Tested for I_{LM}
- Short Circuit Ruggedness
- Co-packed with Soft Fast Recovery Diode

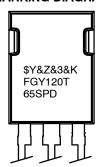
Typical Applications

- Traction Inverter for HEV/EV
- Auxiliary DC/AC Converters
- Motor Drives
- Other Power-Train Applications Requiring High Power Switch


MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-to-Emitter Voltage	V _{CES}	650	V
Gate-to-Emitter Voltage Transient Gate-to-Emitter Voltage	V _{GES}	±20 ±30	V
	I _C	160 120	Α
Pulsed Collector Current	I_{LM}	360	Α
Pulsed Collector Current	I _{CM}	360	Α
Diode Forward Current (Note 1) @ $T_C = 25^{\circ}C$ @ $T_C = 100^{\circ}C$	Ι _Ε	160 120	Α
	P _D	714 357	W
Short Circuit Withstand Time @ T _C = 25°C	SCWT	6	μs
Voltage Transient Ruggedness (Note 2)	dV/dt	10	V/ns
Operating Junction / Storage Temperature Range	T _J , T _{STG}	-55 to +175	°C
Maximum Lead Temp. for Soldering Purposes, 1/8" from case for 5 seconds	TL	265	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.


- 1. Value limit by bond wire
- 2. V_{CC} = 400 V, V_{GE} = 15 V, I_{C} = 360 A, Inductive Load

120 A, 650 V, V_{CESat} = 1.6 V

MARKING DIAGRAM

\$Y = ON Semiconductor Logo &Z = Assembly Plant Code &3 = Date Code (Year & Week) &K = Lot Traceability Code FGY120T65SPD = Specific Device Code

ORDERING INFORMATION

Device	Package	Shipping
FGY120T65SPD	TO-247-3LD	30 Units / Tube

THERMAL CHARACTERISTICS

Rating	Symbol	Value	Unit
Thermal resistance junction-to-case, for IGBT	$R_{ heta JC}$	0.21	°C/W
Thermal resistance junction-to-case, for Diode	$R_{ heta JC}$	0.32	
Thermal resistance junction-to-ambient	$R_{ heta JA}$	40	

ELECTRICAL CHARACTERISTICS (T_{.1} = 25°C unless otherwise noted)

Parameter	Test Conditions	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS				•		
Collector-emitter breakdown voltage, gate-emitter short-circuited	V _{GE} = 0 V, I _C = 1 mA	BV _{CES}	650	_	-	V
Temperature Coefficient of Breakdown Voltage	V _{GE} = 0 V, I _C = 1 mA	$\frac{\Delta BV_{CES}}{\Delta T_{J}}$	-	0.6	-	V/°C
Collector-emitter cut-off current, gate-emitter short-circuited	V _{GE} = 0 V, V _{CE} = 650 V	I _{CES}	-	-	40	μΑ
Gate leakage current, collector- emitter short-circuited	V _{GE} = 20 V, V _{CE} = 0 V	I _{GES}	-	-	±250	nA
ON CHARACTERISTICS				•		
Gate-emitter threshold voltage	$V_{GE} = V_{CE}$, $I_C = 120 \text{ mA}$	V _{GE(th)}	4.3	5.3	6.3	V
Collector-emitter saturation voltage	V _{GE} = 15 V, I _C = 120 A V _{GE} = 15 V, I _C = 120 A, T _J = 175°C	V _{CE(sat)}	- -	1.6 2.15	2.05 -	V
DYNAMIC CHARACTERISTICS				•		
Input capacitance	V _{CE} = 30 V,	C _{ies}	_	4930	_	pF
Output capacitance	V _{GE} = 0 V, f = 1 MHz	C _{oes}	-	375	-	
Reverse transfer capacitance		C _{res}	-	42	-	
Internal Gate Resistance	f = 1 MHz	R_{G}	-	3	-	Ω
Gate charge total	V _{CE} = 400 V,	Qg	-	125	187	nC
Gate-to-emitter charge	I _C = 120 A, V _{GE} = 15 V	Q _{ge}	-	38	-	
Gate-to-collector charge		Q_{gc}	-	40	-	
SWITCHING CHARACTERISTICS, IND	DUCTIVE LOAD					
Turn-on delay time	$T_{J} = 25^{\circ}C,$	t _{d(on)}	-	40	-	ns
Rise time	$V_{CC} = 400 \text{ V},$ $I_{C} = 120 \text{ A},$	t _r	-	104	-	
Turn-off delay time	R_G = 5.0 Ω, V_{GE} = 15 V,	t _{d(off)}	-	80	-	
Fall time	Inductive Load	t _f	-	116	-	
Turn-on switching loss	1	E _{on}	-	6.6	-	mJ
Turn-off switching loss		E _{off}	-	3.8	-	
Total switching loss]	E _{ts}	-	10.4	-	
Turn-on delay time	T _J = 175°C,	t _{d(on)}	-	36	-	ns
Rise time	$\begin{array}{c} V_{CC} = 400 \text{ V}, \\ I_{C} = 120 \text{ A}, \\ R_{G} = 5.0 \Omega, \\ V_{GE} = 15 \text{ V}, \\ \text{Inductive Load} \end{array}$	t _r	-	112	-	
Turn-off delay time		t _{d(off)}	-	92	-	1
Fall time		t _f	-	160	-	1
Turn-on switching loss		E _{on}	-	10.5	-	mJ
Turn-off switching loss]	E _{off}	-	4.9	-	1
Total switching loss		E _{ts}	_	15.4	_	

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted) (Continued)

Parameter	Test Conditions	Symbol	Min	Тур	Max	Unit
DIODE CHARACTERISTIC			•			
Diode Forward Voltage	I _F = 120 A, T _J = 25°C	V_{FM}	-	1.4	1.7	V
	I _F = 120 A, T _J = 175°C		-	1.35	-	
Reverse Recovery Energy	I_F = 120 A, dI_F/dt = 1000 A/ μ s, V_{CE} = 400 V, T_J = 25°C	E _{rec}	-	428	-	Lμ
	I_F = 120 A, dI_F/dt = 1000 A/ μ s, V_{CE} = 400 V, T_J = 175°C		-	2026	-	
Diode Reverse Recovery Time	I_F = 120 A, dI_F/dt = 1000 A/ μ s, V_{CE} = 400 V, T_J = 25°C	T _{rr}	-	107	-	ns
	I_F = 120 A, dI_F/dt = 1000 A/ μ s, V_{CE} = 400 V, T_J = 175°C		-	203	-	
Diode Reverse Recovery Charge	I_F = 120 A, dI_F/dt = 1000 A/ μ s, V_{CE} = 400 V, T_J = 25°C	Q _{rr}	-	2237	-	nC
	I_F = 120 A, dI_F/dt = 1000 A/ μ s, V_{CE} = 400 V, T_J = 175°C		-	8155	-]

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

TYPICAL CHARACTERISTICS

8

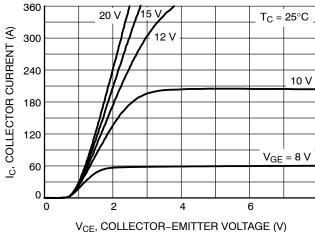


Figure 1. Typical Output Characteristics

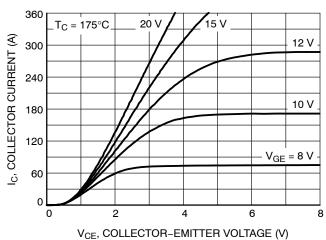


Figure 2. Typical Output Characteristics

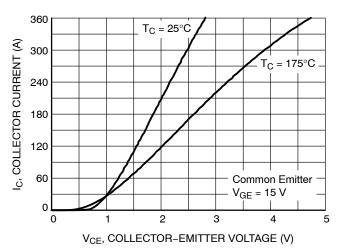


Figure 3. Typical Saturation Voltage

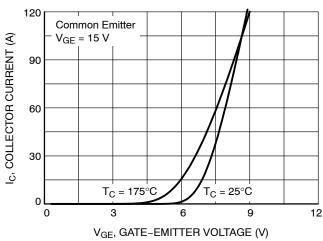


Figure 4. Transfer Characteristics

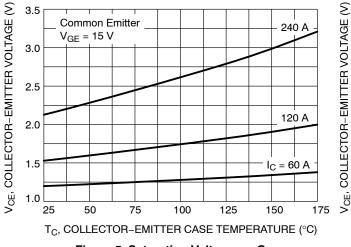


Figure 5. Saturation Voltage vs. Case Temperature

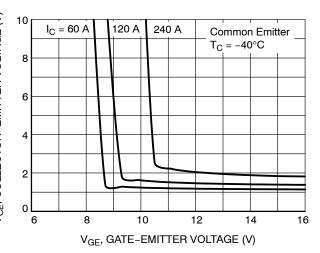


Figure 6. Saturation Voltage vs. V_{GE}

TYPICAL CHARACTERISTICS

V_{CE}, COLLECTOR-EMITTER VOLTAGE (V)

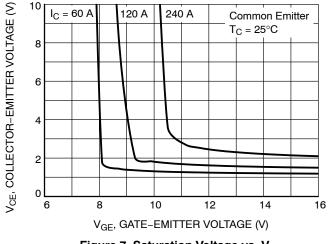


Figure 7. Saturation Voltage vs. V_{CE}

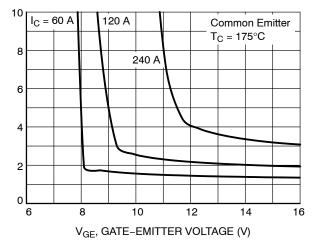


Figure 8. Saturation Voltage vs. V_{CE}

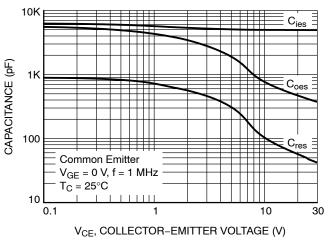


Figure 9. Capacitance Characteristics

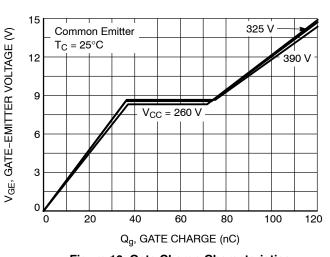


Figure 10. Gate Charge Characteristics

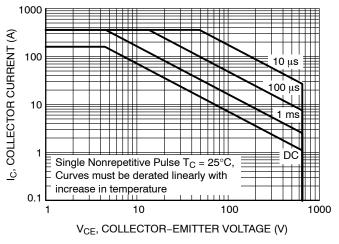


Figure 11. SOA Characteristics

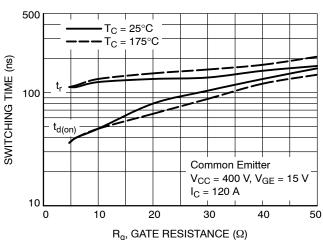


Figure 12. Turn-On Characteristics vs. Gate Resistance

TYPICAL CHARACTERISTICS

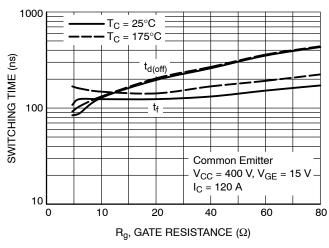


Figure 13. Turn-Off Characteristics vs. Gate Resistance

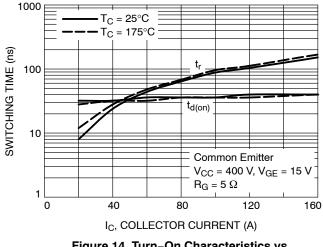


Figure 14. Turn-On Characteristics vs.
Collector Current

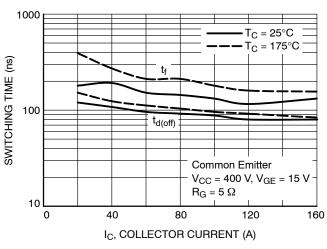


Figure 15. Turn-Off Characteristics vs.
Collector Current

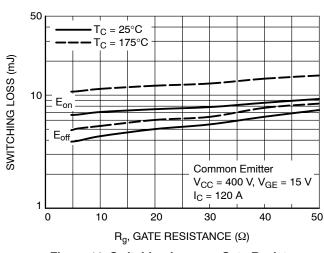


Figure 16. Switching Loss vs. Gate Resistance

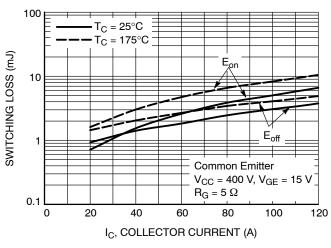


Figure 17. Switching Loss vs. Collector Current

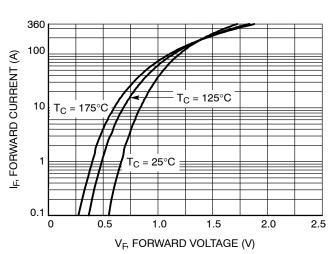


Figure 18. Forward Characteristics

TYPICAL CHARACTERISTICS

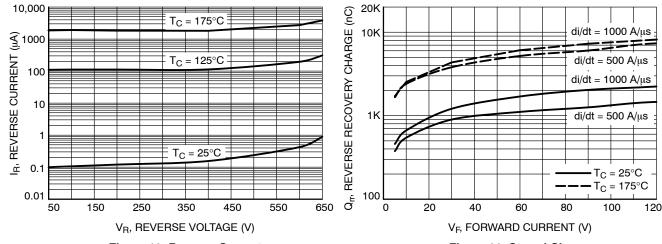


Figure 19. Reverse Current

Figure 20. Stored Charge

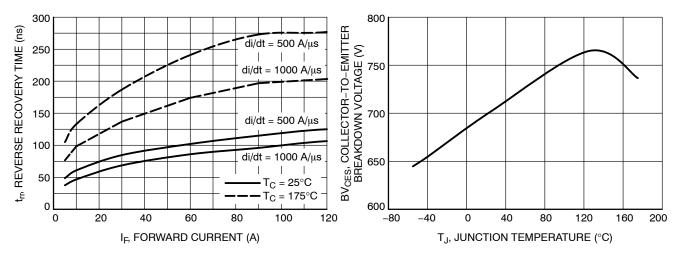


Figure 21. Reverse Recovery Time

Figure 22. Collector-to-Emitter Breakdown Voltage vs. Junction Temperature

TYPICAL CHARACTERISTICS

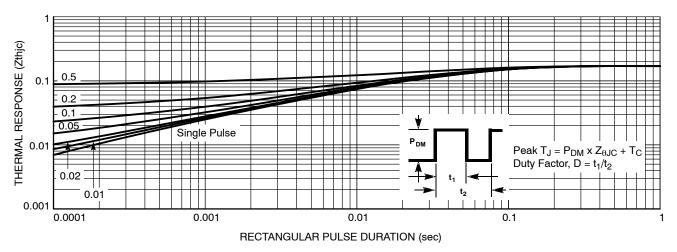


Figure 23. Transient Thermal Impedance of IGBT

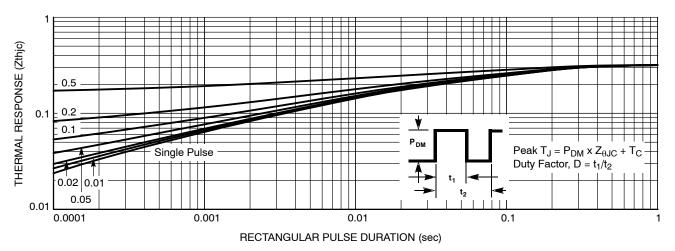
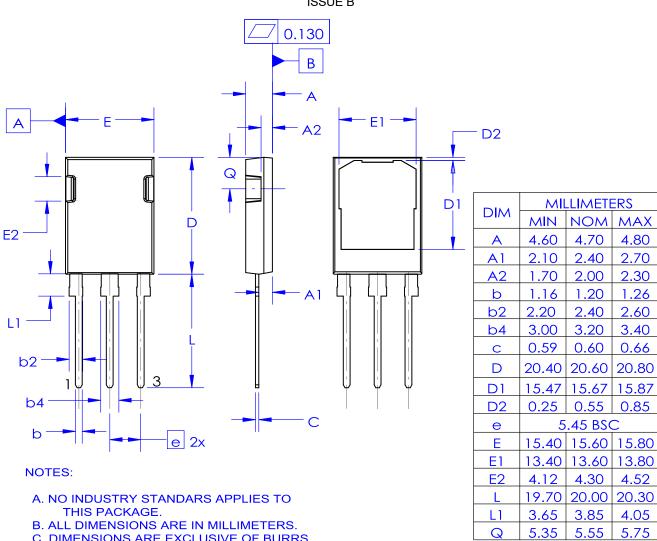



Figure 24. Transient Thermal Impedance of Diode

PACKAGE DIMENSIONS

- C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH AND TIE BAR PROTRUSIONS.
- D. DRAWING CONFORMS TO ASME Y14.5-2009.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

TECHNICAL SUPPORT

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative