IGBT - Field Stop, Trench

1200 V, 25 A

FGH25T120SMD

Description

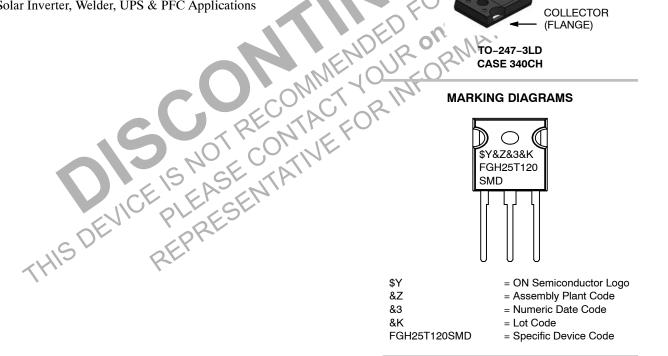
Using innovative field stop trench IGBT technology, ON Semiconductor's new series of field stop trench IGBTs offer the optimum performance for hard switching application such as solar inverter, UPS, welder and PFC applications.

Features

- FS Trench Technology, Positive Temperature Coefficient
- High Speed Switching
- Low Saturation Voltage: $V_{CE(sat)} = 1.8 \text{ V} @ I_C = 25 \text{ A}$
- 100% of the Parts Tested for I_{LM} (Note 1)
- High Input Impedance
- This Device is Pb-Free and is RoHS Compliant

Applications

• Solar Inverter, Welder, UPS & PFC Applications


ON Semiconductor®

www.onsemi.com

TO-247-3LD CASE 340CH

MARKING DIAGRAMS

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet.

ABSOLUTE MAXIMUM RATINGS	(T _C = 25°C, unless otherwise specified)
--------------------------	---

Parameter	Symbol	Ratings	Unit	
Collector to Emitter Voltage		V _{CES}	1200	V
Gate to Emitter Voltage		V _{GES}	±25	V
Transient Gate to Emitter Voltage			±30	V
Collector Current	$T_{C} = 25^{\circ}C$	Ι _C	50	А
Collector Current	$T_{C} = 100^{\circ}C$		25	А
Clamped Inductive Load Current (Note 1)	T _C = 25°C	I _{LM}	100	Α
Pulsed Collector Current (Note 2)		I _{CM}	100	Α
Diode Continuous Forward Current	$T_{C} = 25^{\circ}C$	۱ _F	50	Α
Diode Continuous Forward Current	$T_{C} = 100^{\circ}C$		25	Α
Diode Maximum Forward Current		I _{FM}	200	Α
Maximum Power Dissipation	$T_{C} = 25^{\circ}C$	PD	428	W
Maximum Power Dissipation	$T_{C} = 100^{\circ}C$		214	W
Operating Junction Temperature		TJ	-55 to +175	°C
Storage Temperature Range		T _{stg}	55 to +175	°C
Maximum Lead Temp. for Soldering Purposes, 1/8" fr	rom Case for 5 Seconds	TL	300	°C

THERMAL CHARACTERISTICS

Maximum Lead Temp. for Soldering Purposes, 1/8" from Case for 5 Seconds		300	°C				
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. 1. V _{CC} = 600 V, V _{GE} = 15 V, I _C = 100 A, R _G = 23 Ω, Inductive Load 2. Limited by Tjmax THERMAL CHARACTERISTICS							
Characteristic	Symbol	Value	Unit				
Thermal Resistance, Junction to Case, Max. (IGBT)	$R_{\theta JC}$	0.35	°C/W				
Thermal Resistance, Junction to Case, Max. (Diode)	$R_{\theta JC}$	1.4	°C/W				

PACKAGE MARKING AND ORDERING INFORMATION

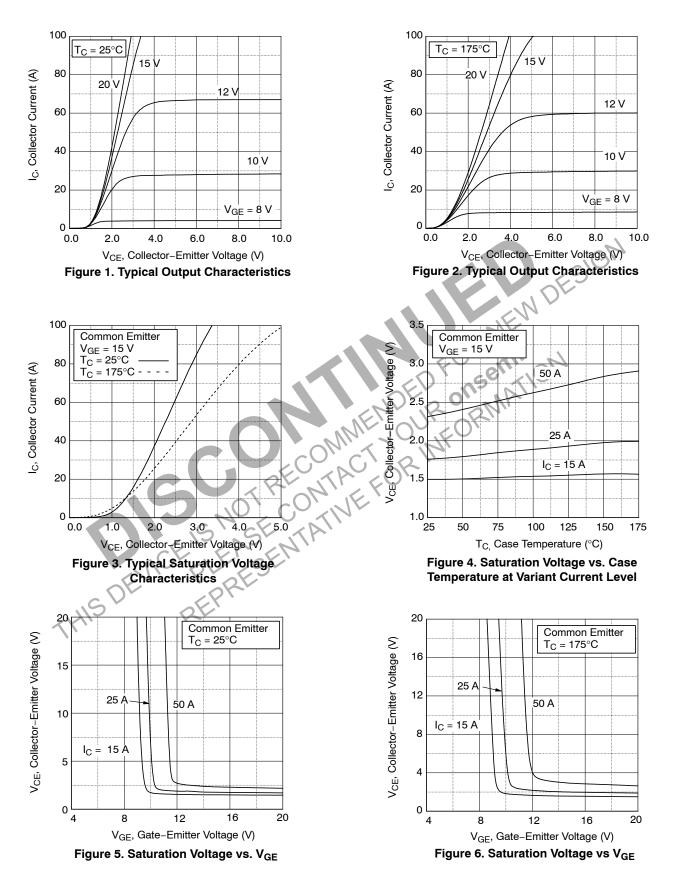
Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FGH25T120SMD	FGH25T120SMD-F155	TO-247-3LD	_	_	30

ELECTRICAL CHARACTERISTICS OF THE IGBT (T_C = 25°C unless otherwise noted)

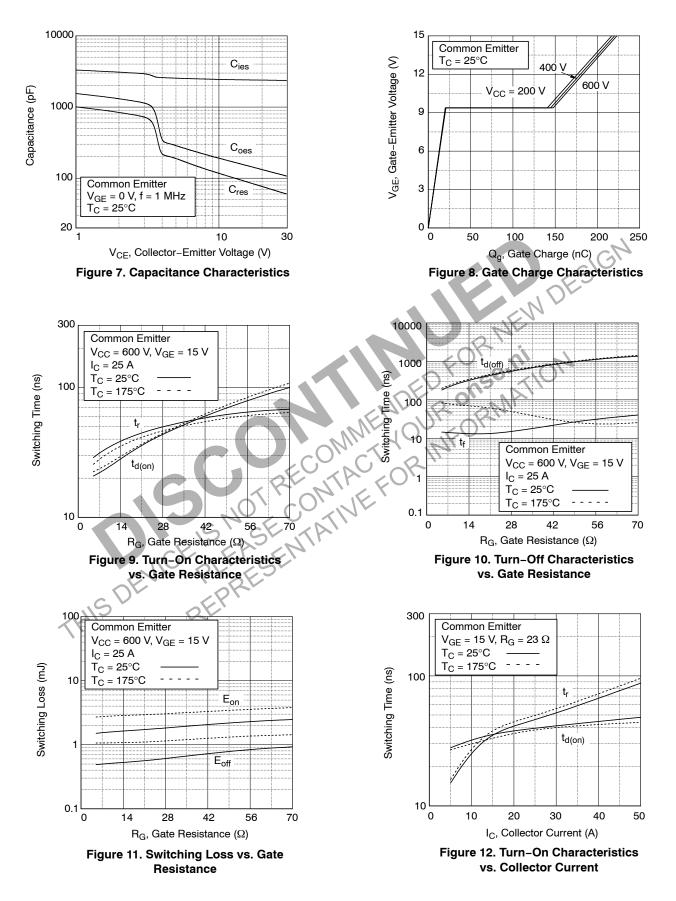
 \sim

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
OFF CHARACTERISTICS				-		
Collector to Emitter Breakdown Voltage	BV _{CES}	V_{GE} = 0 V, I_C = 250 μ A	1200	-	-	V
Collector Cut-Off Current	I _{CES}	$V_{CE} = V_{CES}, V_{GE} = 0 V$	-	-	250	μA
G-E Leakage Current	I _{GES}	$V_{GE} = V_{GES}, V_{CE} = 0 V$	-	-	±400	nA
ON CHARACTERISTICS						
G-E Threshold Voltage	V _{GE(th)}	I_{C} = 25 mA, V_{CE} = V_{GE}	4.9	6.2	7.5	V
Collector to Emitter Saturation Voltage	V _{CE(sat)}	I_{C} = 25 A, V_{GE} = 15 V, T_{C} = 25°C	-	1.8	2.4	V
		I _C = 25 A, V _{GE} = 15 V, T _C = 175°C	-	1.9	-	V

ELECTRICAL CHARACTERISTICS OF THE IGBT ($T_C = 25^{\circ}C$ unless otherwise noted) (continued)


Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit	
DYNAMIC CHARACTERISTICS							
Input Capacitance	C _{ies}	$V_{CE} = 30 \text{ V}, \text{ V}_{GE} = 0 \text{ V}, \text{ f} = 1 \text{ MHz}$	-	2800	-	pF	
Output Capacitance	C _{oes}	1	_	105	-	pF	
Reverse Transfer Capacitance	C _{res}	1	_	60	-	pF	
SWITCHING CHARACTERISTICS	-	-					
Turn-On Delay Time	t _{d(on)}	$V_{CC} = 600 \text{ V}, \text{ I}_{C} = 25 \text{ A},$	-	40	_	ns	
Rise Time	t _r	$R_G = 23 \Omega, V_{GE} = 15 V,$ Inductive Load, $T_C = 25^{\circ}C$	-	45	-	ns	
Turn-Off Delay Time	t _{d(off)}	1	-	490	_	ns	
Fall Time	t _f	1	-	12	-	ns	
Turn-On Switching Loss	E _{on}	1	-	1.74	-	mJ	
Turn-Off Switching Loss	E _{off}		-	0.56	-	mJ	
Total Switching Loss	E _{ts}		-	2.30	SN'	mJ	
Turn-On Delay Time	t _{d(on)}	$\label{eq:V_CC} \begin{split} V_{CC} &= 600 \text{ V}, \text{ I}_{C} = 25 \text{ A}, \\ R_{G} &= 23 \ \Omega, \text{ V}_{GE} = 15 \text{ V}, \\ \text{Inductive Load, } T_{C} &= 175^{\circ}\text{C} \end{split}$	- /	40	- ``	ns	
Rise Time	t _r		-	48	-	ns	
Turn-Off Delay Time	t _{d(off)}		EV	520	-	ns	
Fall Time	t _f		4	64	-	ns	
Turn-On Switching Loss	E _{on}	EOr		2.94	-	mJ	
Turn-Off Switching Loss	E _{off}	IDED one	<u>e-</u> ~\	1.09	-	mJ	
Total Switching Loss	E _{ts}		NP,	4.03	-	mJ	
Total Gate Charge	Qg	$V_{CE} = 600 \text{ V}, I_{C} = 25 \text{ A}, V_{GE} = 15 \text{ V}$		225	-	nC	
Gate to Emitter Charge	Q _{ge}	MAN YOUNFO	_	20	-	nC	
Gate to Collector Charge	Q _{gc}		_	128	_	nC	

ELECTRICAL CHARACTERISTICS OF THE DIODE (T_C = 25°C unless otherwise noted)


Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Diode Forward Voltage	VFM	I⊨ = 25 A, T _C = 25°C	-	2.8	3.7	V
	I SE	I _F = 25 A, T _C = 175°C	-	2.1	-	V
Diode Reverse Recovery Time	ťrr	V _R = 600 V, I _F = 25 A,	-	60	-	ns
Diode Peak Reverse Recovery Current	۱ _{rr}	$di_F/dt = 200 \text{ A}/\mu \text{s}, \text{ T}_C = 25^{\circ}\text{C}$	-	6.6	-	А
Diode Reverse Recovery Charge	Q _{rr}		-	197	-	nC
Reverse Recovery Energy	E _{rec}	$V_{\rm R} = 600 \text{ V}, I_{\rm F} = 25 \text{ A},$	-	330	-	μJ
Diode Reverse Recovery Time	t _{rr}	dI _F /dt = 200 A/µs, T _C = 175°C	-	325	-	ns
Diode Peak Reverse Recovery Current	I _{rr}		-	13	-	Α
Diode Reverse Recovery Charge	Q _{rr}		-	2113	-	nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

TYPICAL PERFORMANCE CHARACTERISTICS

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

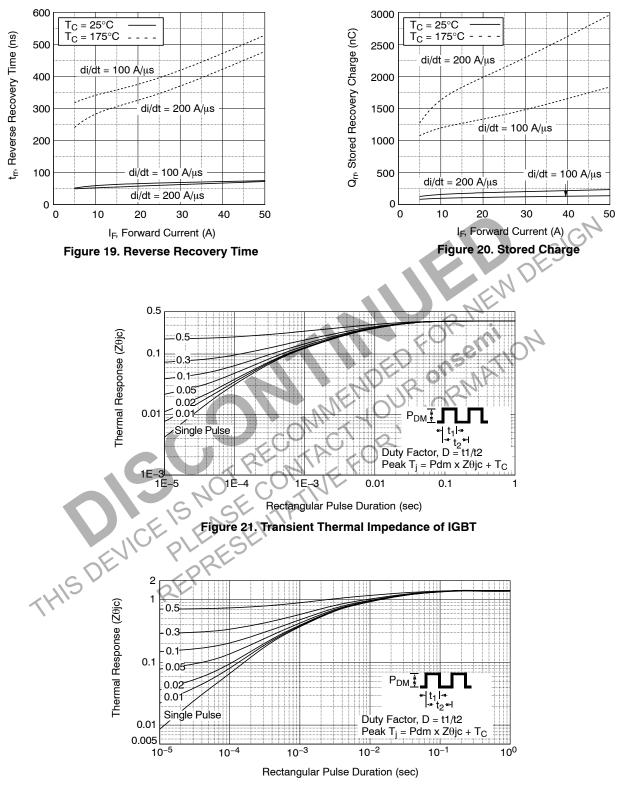
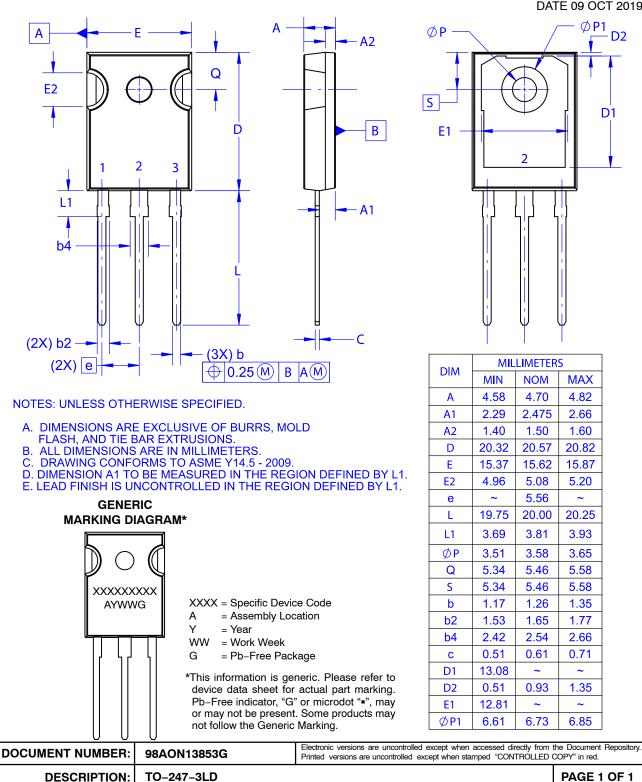



Figure 22. Transient Thermal Impedance of Diode

TO-247-3LD CASE 340CH **ISSUE A**

DATE 09 OCT 2019

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>