EcoSPARK® 2 Ignition IGBT 320 mJ, 450 V, N-Channel Ignition IGBT # FGD3245G2-F085C #### **Features** - SCIS Energy = 320 mJ at $T_J = 25$ °C - Logic Level Gate Drive - Low Saturation Voltage - AEC-Q101 Qualified and PPAP Capable - These Devices are Pb-Free and are RoHS Compliant #### **Applications** - Automotive Ignition Coil Driver Circuits - High Current Ignition System - Coil on Plug Application # **MAXIMUM RATINGS** ($T_J = 25^{\circ}C$ unless otherwise noted) | Symbol | Parameter | Value | Unit | |-----------------------------------|--|----------------|------| | BV _{CER} | Collector to Emitter Breakdown
Voltage (IC = 1 mA) | 450 | V | | BV _{ECS} | Emitter to Collector Voltage – Reverse
Battery Condition (IC = 10 mA) | 28 | V | | E _{SCIS25} | ISCIS = 14.6 A, L = 3.0 mHy,
RGE = 1 K Ω , T _C = 25°C (Note 1) | 320 | mJ | | E _{SCIS150} | ISCIS = 10.9 A, L = 3.0 mHy,
RGE = 1 K Ω , T _C = 150°C (Note 2) | 180 | mJ | | IC25 | Collector Current Continuous
at VGE = 4.0 V, T _C = 25°C | 23 | А | | IC110 | Collector Current Continuous at VGE = 4.0 V, T _C = 110°C | 23 | Α | | V _{GEM} | Gate to Emitter Voltage Continuous | ±10 | V | | PD | Power Dissipation Total, T _C = 25°C | 150 | W | | | Power Dissipation Derating, T _C > 25°C | 1.1 | W/°C | | T _J , T _{STG} | Operating Junction and Storage
Temperature | –55 to
+175 | °C | | TL | Lead Temperature for Soldering
Purposes (1/8" from case for 10 s) | 300 | °C | | T _{PKG} | Reflow Soldering according to JESD020C | 260 | °C | | ESD | HBM–Electrostatic Discharge Voltage at 100 pF, 1500 Ω | 4 | kV | | | CDM–Electrostatic Discharge Voltage at 1 Ω | 2 | kV | Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. - Self clamped inductive Switching Energy (ESCIS25) of 320 mJ is based on the test conditions that is starting T_J = 25°C, L = 3 mHy, ISCIS = 14.6 A, VCC = 100 V during inductor charging and VCC = 0 V during time in clamp. - Self Clamped inductive Switching Energy (ESCIS150) of 180 mJ is based on the test conditions that is starting T_J = 150°C, L = 3mHy, ISCIS = 10.9 A, VCC = 100 V during inductor charging and VCC = 0 V during time in clamp. DPAK3 CASE 369AS #### **MARKING DIAGRAM** A = Assembly Location Y = Year WW = Work Week XXXX = Device Code G = Pb-Free Package # **ORDERING INFORMATION** See detailed ordering and shipping information on page 2 of this data sheet. #### THERMAL RESISTANCE RATINGS | Characteristic | | Max | Units | |---|--|-----|-------| | Junction-to-Case - Steady State (Drain) | | 0.9 | °C/W | # **ELECTRICAL CHARACTERISTICS** (T_J = 25°C unless otherwise specified) | Symbol | Parameter | Test Conditions | | Min | Тур. | Max. | Units | |----------------------|---|--|------------------------|------|------|------|---------| | OFF CHAR | ACTERISTICS | | | • | • | • | | | BV _{CER} | Collector to Emitter Breakdown
Voltage | I_{CE} = 2 mA, V_{GE} = 0 V,
R_{GE} = 1 k Ω ,
T_{J} = -40 to 150°C | | 420 | - | 480 | V | | BV _{CES} | Collector to Emitter Breakdown
Voltage | I _{CE} = 10 mA, V _{GE} = 0 V,
R _{GE} = 0,
T _J = -40 to 150°C | | 440 | - | 500 | V | | BV _{ECS} | Emitter to Collector Breakdown
Voltage | $I_{CE} = -75 \text{ mA}, V_{GE} = 0 \text{ V},$
$T_{J} = 25^{\circ}\text{C}$ | | 28 | - | - | V | | BV _{GES} | Gate to Emitter Breakdown Voltage | I _{GES} = ±2 mA | | ±12 | ±14 | - | ٧ | | I _{CER} | Collector to Emitter Leakage Current | V _{CE} = 175 V | T _J = 25°C | - | - | 25 | μΑ | | | 1 | $R_{GE} = 1 k\Omega$ | T _J = 150°C | - | = | 1 | mA | | I _{ECS} | Emitter to Collector Leakage Current | V _{EC} = 24 V | T _J = 25°C | - | - | 1 | mA | | | | | T _J = 150°C | - | - | 40 | | | R ₁ | Series Gate Resistance | | | - | 120 | - | Ω | | R ₂ | Gate to Emitter Resistance | | | 10K | _ | 30K | Ω | | ON CHARA | CTERISTICS | | | | | | | | V _{CE(SAT)} | Collector to Emitter Saturation Voltage | $I_{CE} = 6 \text{ A}, V_{GE} = 4 \text{ V}, T_{J} = 25^{\circ}\text{C}$ | | _ | 1.13 | 1.25 | V | | V _{CE(SAT)} | Collector to Emitter Saturation Voltage | I_{CE} = 10 A, V_{GE} = 4.5 V, T_{J} = 150°C | | - | 1.32 | 1.50 | V | | V _{CE(SAT)} | Collector to Emitter Saturation Voltage | I _{CE} = 15 A, V _{GE} = 5 V, T _J = 150°C | | _ | 1.64 | 1.85 | V | | DYNAMIC (| CHARACTERISTICS | | | | | | | | Q _{G(ON)} | Gate Charge | I _{CE} = 10 A, V _{CE} = 12 V, V _{GE} = 5 V | | - | 23 | _ | nC | | V _{GE(TH)} | Gate to Emitter Threshold Voltage | I _{CE} = 1 mA
V _{CE} = V _{GE} | T _J = 25°C | 1.3 | 1.6 | 2.2 | ٧ | | | | | T _J = 150°C | 0.75 | 1.1 | 1.8 | <u></u> | | V_{GEP} | Gate to Emitter Plateau Voltage | V _{CE} = 12 V, I _{CE} = 10 A | | - | 2.7 | - | V | | SWITCHING | G CHARACTERISTICS | | | | | | | | td _{(ON)R} | Current Turn-On Delay
Time-Resistive | $V_{CE} = 14 \text{ V}, R_L = 1 \Omega, \\ V_{GE} = 5 \text{ V}, R_G = 470 \Omega, \\ T_J = 25^{\circ}\text{C}$ | | _ | 0.9 | 4 | μs | | t _{rR} | Current Rise Time-Resistive | | | - | 2.6 | 7 | | | td _{(OFF)L} | Current Turn-Off Delay Time-Inductive | $V_{CE} = 300 \text{ V, L} = 1 \text{ mH,}$ $V_{GE} = 5 \text{ V, R}_{G} = 470 \Omega,$ $I_{CF} = 6.5 \text{ A, T}_{L} = 25^{\circ}\text{C}$ | | - | 5.4 | 15 | | | | | | | | | | | Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. # PACKAGE MARKING AND ORDERING INFORMATION | Device | Package | Shipping [†] | |-----------------|-------------------|------------------------| | FGD3245G2-F085C | DPAK
(Pb-Free) | 2500 Units/Tape & Reel | [†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. #### TYPICAL CHARACTERISTICS Figure 1. Self Clamped Inductive Switching Current vs. Time in Clamp Figure 3. Collector to Emitter On–State Voltage vs. Junction Temperature Figure 5. Collector to Emitter On–State Voltage vs. Collector Current Figure 2. Self Clamped Inductive Switching Current vs. Inductance Figure 4. Collector to Emitter On–State Voltage vs. Junction Temperature Figure 6. Collector to Emitter On-State Voltage vs. Collector Current #### TYPICAL CHARACTERISTICS (continued) Figure 7. Collector to Emitter On-State Voltage vs. Collector Current Figure 8. Transfer Characteristics Figure 9. DC Collector Current vs. Case Temperature Figure 10. Gate Charge Figure 11. Threshold Voltage vs. Junction Temperature Figure 12. Leakage Current vs. Junction Temperature # TYPICAL CHARACTERISTICS (continued) Figure 13. Switching Time vs. Junction Temperature Figure 14. Capacitance vs. Collector to Emitter Figure 15. Break Down Voltage vs. Series Resistance Figure 16. IGBT Normalized Transient Thermal Impedance, Junction to Case # **TEST CIRCUIT AND WAVEFORMS** $R_{G} = 1K\Omega$ G DUT E V_{CC} Figure 17. Inductive Switching Test Circuit Figure 18. t_{ON} and t_{OFF} Switching Test Circuit Figure 19. Energy Test Circuit Figure 20. Energy Waveforms #### DPAK3 6.10x6.54x2.29, 4.57P CASE 369AS **ISSUE B** **DATE 20 DEC 2023** - NOTES: UNLESS OTHERWISE SPECIFIED A) THIS PACKAGE CONFORMS TO JEDEC, TO-252, ISSUE F, VARIATION AA. B) ALL DIMENSIONS ARE IN MILLIMETERS. C) DIMENSIONING AND TOLERANCING PER - D) A - F) - DIMENSIONING AND TOLERANCING PER ASME Y14.5M-2018. SUPPLIER DEPENDENT MOLD LOCKING HOLES OR CHAMFERED CORNERS OR EDGE PROTRUSION. FOR DIGDE PRODUCTS, L4 IS 0.25 MM MAX PLASTIC BODY STUB WITHOUT CENTER LEAD. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH AND TIE BAR EXTRUSIONS. LAND PATTERN RECOMMENDATION IS BASED ON IPC7351A STD T0228P991X239-3N. | DIM | MILLIME LEKS | | | | | |-----|--------------|------|-------|--|--| | DIN | MIN. | N□M. | MAX. | | | | Α | 2.18 | 2.29 | 2.39 | | | | A1 | 0.00 | - | 0.127 | | | | b | 0.64 | 0.77 | 0.89 | | | | b2 | 0.76 | 0.95 | 1.14 | | | | b3 | 5.21 | 5.34 | 5.46 | | | | C | 0.45 | 0.53 | 0.61 | | | | c2 | 0.45 | 0.52 | 0.58 | | | | D | 5.97 | 6.10 | 6.22 | | | | D1 | 5.21 | | | | | | E | 6.35 | 6.54 | 6.73 | | | | E1 | 4.32 | | | | | | е | 2.286 BSC | | | | | | e1 | 4.572 BSC | | | | | | Н | 9.40 | 9,91 | 10.41 | | | | L | 1.40 | 1.59 | 1.78 | | | | L1 | 2.90 REF | | | | | | L2 | 0.51 BSC | | | | | | L3 | 0.89 | 1.08 | 1.27 | | | | L4 | | | 1.02 | | | θ MILLIMETEDS #### LAND PATTERN RECOMMENDATION *FOR ADDITIONAL INFORMATION ON DUR PB-FREE STRATEGY AND SOLDERING DETAILS, PLEASE DOWNLOAD THE ON SEMICONDUCTOR SOLDERING AND MOUNTING TECHNIQUES REFERENCE MANUAL, SOLDERRM/D. #### **GENERIC MARKING DIAGRAM*** XXXXXX XXXXXX AYWWZZ *This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "■", may or may not be present. Some products may not follow the Generic Marking. XXXX = Specific Device Code = Assembly Location Α = Year WW = Work Week ZZ = Assembly Lot Code **DOCUMENT NUMBER:** 98AON13810G Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. **DESCRIPTION:** DPAK3 6.10x6.54x2.29, 4.57P **PAGE 1 OF 1** onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others. onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase #### ADDITIONAL INFORMATION **TECHNICAL PUBLICATIONS:** $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$ onsemi Website: www.onsemi.com ONLINE SUPPORT: www.onsemi.com/support For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales