Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor’s system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.
FGA50N100BNTD
1000 V NPT Trench IGBT

General Description
Using Fairchild’s proprietary trench design and advanced NPT technology, the 1000V NPT IGBT offers superior conduction and switching performances, high avalanche ruggedness and easy parallel operation. This device offers the optimum performance for hard switching application such as UPS, welder applications.

Features
• High Speed Switching
• Low Saturation Voltage : $V_{CE(sat)} = 2.5\, \text{V} @ I_C = 60\, \text{A}$
• High Input Impedance
• Built-in Fast Recovery Diode

Application
UPS, Welder, Induction Heating, Microwave Oven

Absolute Maximum Ratings $T_C = 25^\circ\text{C}$ unless otherwise noted

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Ratings</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{CES}</td>
<td>Collector-Emitter Voltage</td>
<td>1000</td>
<td>V</td>
</tr>
<tr>
<td>V_{GES}</td>
<td>Gate-Emitter Voltage</td>
<td>± 25</td>
<td>V</td>
</tr>
<tr>
<td>I_C</td>
<td>Collector Current $\quad @ T_C = 25^\circ\text{C}$</td>
<td>50</td>
<td>A</td>
</tr>
<tr>
<td>$I_{CM(1)}$</td>
<td>Pulsed Collector Current $\quad @ T_C = 25^\circ\text{C}$</td>
<td>100</td>
<td>A</td>
</tr>
<tr>
<td>I_F</td>
<td>Diode Continuous Forward Current $\quad @ T_C = 25^\circ\text{C}$</td>
<td>30</td>
<td>A</td>
</tr>
<tr>
<td>P_D</td>
<td>Maximum Power Dissipation $\quad @ T_C = 25^\circ\text{C}$</td>
<td>156</td>
<td>W</td>
</tr>
<tr>
<td>T_J</td>
<td>Operating Junction Temperature</td>
<td>-55 to +150</td>
<td>°C</td>
</tr>
<tr>
<td>T_{stg}</td>
<td>Storage Temperature Range</td>
<td>-55 to +150</td>
<td>°C</td>
</tr>
<tr>
<td>T_L</td>
<td>Maximum Lead Temp. for soldering Purposes, 1/8” from case for 5 seconds</td>
<td>300</td>
<td>°C</td>
</tr>
</tbody>
</table>

Notes:
(1) Repetitive rating : Pulse width limited by max. junction temperature

Thermal Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>$R_{UC(IGBT)}$</td>
<td>Thermal Resistance, Junction-to-Case</td>
<td>--</td>
<td>0.8</td>
<td>°C/W</td>
</tr>
<tr>
<td>$R_{UC(DIODE)}$</td>
<td>Thermal Resistance, Junction-to-Case</td>
<td>--</td>
<td>2.4</td>
<td>°C/W</td>
</tr>
<tr>
<td>R_{UA}</td>
<td>Thermal Resistance, Junction-to-Ambient</td>
<td>--</td>
<td>25</td>
<td>°C/W</td>
</tr>
</tbody>
</table>
Package Marking and Ordering Information

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Top Mark</th>
<th>Package</th>
<th>Packing Method</th>
<th>Reel Size</th>
<th>Tape Width</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>FGA50N100BNTDTU</td>
<td>FGA50N100BNTD</td>
<td>TO-3P</td>
<td>Rail / Tube</td>
<td>N/A</td>
<td>N/A</td>
<td>30</td>
</tr>
</tbody>
</table>

Electrical Characteristics of IGBT
\(T_C = 25^\circ\text{C} \) unless otherwise noted

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off Characteristics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(B_{V_{CE}})</td>
<td>Collector Emitter Breakdown Voltage</td>
<td>(V_{GE} = 0) V, (I_C = 1) mA</td>
<td>1000</td>
<td>--</td>
<td>--</td>
<td>V</td>
</tr>
<tr>
<td>(I_{CES})</td>
<td>Collector Cut-Off Current</td>
<td>(V_{CE} = 1000) V, (V_{GE} = 0) V</td>
<td>--</td>
<td>--</td>
<td>1.0</td>
<td>mA</td>
</tr>
<tr>
<td>(I_{GES})</td>
<td>G-E Leakage Current</td>
<td>(V_{GE} = \pm 25) V, (V_{CE} = 0) V</td>
<td>--</td>
<td>--</td>
<td>(\pm 500)</td>
<td>nA</td>
</tr>
<tr>
<td>On Characteristics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{GE(th)})</td>
<td>G-E Threshold Voltage</td>
<td>(I_C = 60) mA, (V_{CE} = V_{GE})</td>
<td>4.0</td>
<td>5.0</td>
<td>7.0</td>
<td>V</td>
</tr>
<tr>
<td>(V_{CE(sat)})</td>
<td>Collector to Emitter Saturation Voltage</td>
<td>(I_C = 10) A, (V_{CE} = 15) V</td>
<td>--</td>
<td>1.5</td>
<td>1.8</td>
<td>V</td>
</tr>
<tr>
<td>Dynamic Characteristics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(C_{ies})</td>
<td>Input Capacitance</td>
<td>(V_{CE} = 10) V, (V_{GE} = 0) V</td>
<td>--</td>
<td>6000</td>
<td>--</td>
<td>pF</td>
</tr>
<tr>
<td>(C_{oes})</td>
<td>Output Capacitance</td>
<td>(f = 1) MHz</td>
<td>--</td>
<td>260</td>
<td>--</td>
<td>pF</td>
</tr>
<tr>
<td>(C_{res})</td>
<td>Reverse Transfer Capacitance</td>
<td></td>
<td>--</td>
<td>200</td>
<td>--</td>
<td>pF</td>
</tr>
<tr>
<td>Switching Characteristics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(t_{on})</td>
<td>Turn-On Delay Time</td>
<td>(V_{CC} = 600) V, (I_C = 60) A, (R_G = 51) (\Omega), (V_{GE} = 15) V, Resistive Load, (T_C = 25^\circ\text{C})</td>
<td>--</td>
<td>140</td>
<td>--</td>
<td>ns</td>
</tr>
<tr>
<td>(t_r)</td>
<td>Rise Time</td>
<td></td>
<td>--</td>
<td>320</td>
<td>--</td>
<td>ns</td>
</tr>
<tr>
<td>(t_{off})</td>
<td>Turn-Off Delay Time</td>
<td></td>
<td>--</td>
<td>630</td>
<td>--</td>
<td>ns</td>
</tr>
<tr>
<td>(t_f)</td>
<td>Fall Time</td>
<td></td>
<td>--</td>
<td>130</td>
<td>250</td>
<td>ns</td>
</tr>
<tr>
<td>(Q_g)</td>
<td>Total Gate Charge</td>
<td>(V_{GE} = 600) V, (I_C = 60) A, (V_{CE} = 15) V, (T_C = 25^\circ\text{C})</td>
<td>--</td>
<td>275</td>
<td>350</td>
<td>nC</td>
</tr>
<tr>
<td>(Q_{ge})</td>
<td>Gate-Emitter Charge</td>
<td></td>
<td>--</td>
<td>45</td>
<td>--</td>
<td>nC</td>
</tr>
<tr>
<td>(Q_{gc})</td>
<td>Gate-Collector Charge</td>
<td></td>
<td>--</td>
<td>95</td>
<td>--</td>
<td>nC</td>
</tr>
<tr>
<td>Electrical Characteristics of DIODE (T_C = 25^\circ\text{C}) unless otherwise noted</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Symbol</td>
<td>Parameter</td>
<td>Test Conditions</td>
<td>Min.</td>
<td>Typ.</td>
<td>Max.</td>
<td>Unit</td>
</tr>
<tr>
<td>(V_{FM})</td>
<td>Diode Forward Voltage</td>
<td>(I_F = 15) A</td>
<td>--</td>
<td>1.2</td>
<td>1.7</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(I_F = 60) A</td>
<td>--</td>
<td>1.8</td>
<td>2.1</td>
<td>V</td>
</tr>
<tr>
<td>(t_{rr})</td>
<td>Diode Reverse Recovery Time</td>
<td>(I_F = 60) A, (dI_F/dt = 20) A/us</td>
<td>--</td>
<td>1.2</td>
<td>1.5</td>
<td>us</td>
</tr>
<tr>
<td>(I_{im})</td>
<td>Instantaneous Reverse Current</td>
<td>(V_{RRM} = 1000) V</td>
<td>--</td>
<td>0.05</td>
<td>2</td>
<td>(\mu A)</td>
</tr>
</tbody>
</table>
Fig 1. Typical Output Characteristics

Fig 2. Typical Saturation Voltage Characteristics

Fig 3. Saturation Voltage vs. Case Temperature at Various Current Levels

Fig 4. Saturation Voltage vs. VGE

Fig 5. Saturation Voltage vs. VGE

Fig 6. Saturation Voltage vs. VGE
FGA50N100BNTD — 1000 V NPT Trench IGBT

Fig 7. Capacitance Characteristics

![Capacitance Characteristics Graph]

Common Emitter
- $V_{CE} = 0 \text{V}$, $f = 1 \text{MHz}$
- $T_J = 25 \degree \text{C}$

Fig 8. Switching Characteristics vs. Gate Resistance

![Switching Characteristics Graph]

- $V_{CC} = 600 \text{V}$, $I_C = 60 \text{A}$
- $V_{GE} = \pm 15 \text{V}$
- $T_J = 25 \degree \text{C}$

Fig 9. Switching Characteristics vs. Collector Current

![Switching Characteristics Graph]

- $V_{CC} = 600 \text{V}$, $R_L = 10 \text{\Omega}$
- $T_J = 25 \degree \text{C}$

Fig 10. Gate Charge Characteristics

![Gate Charge Characteristics Graph]

- $V_{CC} = 600 \text{V}$, $R_g = 51 \text{\Omega}$
- $V_{GE} = \pm 15 \text{V}$
- $T_J = 25 \degree \text{C}$

Fig 11. SOA Characteristics

![SOA Characteristics Graph]

- Max DC Operation
- $V_{CE} = 1000 \text{V}$
- $I_C = 50 \text{A}$

Fig 12. Transient Thermal Impedance of IGBT

![Transient Thermal Impedance Graph]

- Rectangular Pulse Duration [sec]
- Thermal Response [Z_{thjc}]
Fig 13. Forward Characteristics

Fig 14. Reverse Recovery Characteristics vs. di/dt

Fig 15. Reverse Recovery Characteristics vs. Forward Current

Fig 16. Reverse Current vs. Reverse Voltage

Fig 17. Junction capacitance
Figure 18. TO-3P 3L - 3LD, T03, PLASTIC, EIAJ SC-65

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor’s online packaging area for the most recent package drawings:

http://www.fairchildsemi.com/package/packageDetails.html?id=PN_TT3P0-003
Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and resolve any issues.

Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild’s quality standards for handling and storage and provide access to Fairchild’s full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will review these specifications and address any questions customers may have.

Fairchild Semiconductor is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

TRADEMARKS
The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

AccuPower™
AX-CAPl™
BitSic™
Build it Now™
CorePLUS™
CorePOWER™
CROSSVOLT™
CTL™
Current Transfer Logic™
DEUXPEED™
Dual Cool™
EcoSPARK®
EfficientMax™
ESBC™
Fairchild®
Fairchild Semiconductor®
FACT Quiet Series™
FACT™
FastCore™
FETBench™
FPS™
F-PFS™
FRFET™
Global Power Resource™
GreenBridge™
Green FPS™
Gmax™
GTO™
IntelliMAX™
ISOPLANAR™
Marking Small Speakers Sound Louder and Better™
MegaBuck™
MICROCOUPLER™
MicroFET™
MicroPak™
MicroPak2™
MillerDrive™
MotionMax™
mWSaver®
OptoHT™
OPTOLOGIC®
OPTOPLANAR®
PowerTrench®
PowerXS™
Programmable Active Droop™
QFET™
QS™
Quiet Series™
RapidConfigure™
Save our world, 1mW/W/kW at a time™
SignalWise™
SmartMax™
SMART START™
Solutions for Your Success™
SPM®
STEALTH™
SuperFET™
SuperSOT-3
SuperSOT™
SupreMOS®
SyncFET™
Sync-Lock™
System™
TINYBOOST™
TINYBuck™
TinyCalc™
TinyLogic®
TINYOPTO™
TinyPower™
TinyPWM™
TinyWire™
TransiC™
TriFault Detect™
TRUECURRENT™
UHC®
Ultra FRFET™
UniFET™
VCX™
VisualMax™
VoltagePlus™
XS™

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

TRADEMARKS
These specifications do not expand the terms of Fairchild’s worldwide terms and conditions, specifically the Warranty therein, which covers these products.

LIFE SUPPORT POLICY
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used here in:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY
Fairchild Semiconductor Corporation’s Anti-Counterfeiting Policy. Fairchild’s Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts. Full traceability, meet Fairchild’s quality standards for handling and storage and provide access to Fairchild’s full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and resolve any issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

<table>
<thead>
<tr>
<th>Datasheet Identification</th>
<th>Product Status</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advance Information</td>
<td>Formative / In Design</td>
<td>Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.</td>
</tr>
<tr>
<td>Preliminary</td>
<td>First Production</td>
<td>Datasheet contains preliminary data; supplementary data will be published at a later date.</td>
</tr>
<tr>
<td>No Identification Needed</td>
<td>Full Production</td>
<td>Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.</td>
</tr>
<tr>
<td>Obsolete</td>
<td>Not In Production</td>
<td>Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.</td>
</tr>
</tbody>
</table>