Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor’s system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.
FGA30N120FTD
1200 V, 30 A Field Stop Trench IGBT

Features
- Field Stop Trench Technology
- High Speed Switching
- Low Saturation Voltage: \(V_{CE(sat)} = 1.6 \text{ V} \) @ \(I_C = 30 \text{ A} \)
- High Input Impedance

Applications
- Solar Inverter, UPS, Welder, PFC

General Description
Using advanced field stop trench technology, Fairchild®'s 1200V trench IGBTs offer superior conduction and switching performances for soft switching applications. The device can operate in parallel configuration with exceptional avalanche ruggedness. This device is designed for induction heating and microwave oven.

Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Ratings</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{CES})</td>
<td>Collector to Emitter Voltage</td>
<td>1200</td>
<td>V</td>
</tr>
<tr>
<td>(V_{GES})</td>
<td>Gate to Emitter Voltage</td>
<td>± 25</td>
<td>V</td>
</tr>
<tr>
<td>(I_C)</td>
<td>Collector Current @ (T_C = 25^\circ\text{C})</td>
<td>60</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>Collector Current @ (T_C = 100^\circ\text{C})</td>
<td>30</td>
<td>A</td>
</tr>
<tr>
<td>(I_{CM})</td>
<td>Pulsed Collector Current @ (T_C = 25^\circ\text{C})</td>
<td>90</td>
<td>A</td>
</tr>
<tr>
<td>(I_F)</td>
<td>Diode Continuous Forward Current @ (T_C = 100^\circ\text{C})</td>
<td>30</td>
<td>A</td>
</tr>
<tr>
<td>(P_D)</td>
<td>Maximum Power Dissipation @ (T_C = 25^\circ\text{C})</td>
<td>339</td>
<td>W</td>
</tr>
<tr>
<td></td>
<td>Maximum Power Dissipation @ (T_C = 100^\circ\text{C})</td>
<td>132</td>
<td>W</td>
</tr>
<tr>
<td>(T_J)</td>
<td>Operating Junction Temperature</td>
<td>-55 to +150</td>
<td>°C</td>
</tr>
<tr>
<td>(T_{stg})</td>
<td>Storage Temperature Range</td>
<td>-55 to +150</td>
<td>°C</td>
</tr>
<tr>
<td>(T_L)</td>
<td>Maximum Lead Temp. for soldering Purposes, 1/8" from case for 5 seconds</td>
<td>300</td>
<td>°C</td>
</tr>
</tbody>
</table>

Notes:
1: Repetitive rating: Pulse width limited by max. junction temperature

Thermal Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R_{jJC(IGBT)})</td>
<td>Thermal Resistance, Junction to Case</td>
<td>-</td>
<td>0.38</td>
<td>°C/W</td>
</tr>
<tr>
<td>(R_{jJC(Diode)})</td>
<td>Thermal Resistance, Junction to Case</td>
<td>-</td>
<td>1.2</td>
<td>°C/W</td>
</tr>
</tbody>
</table>
Package Marking and Ordering Information

<table>
<thead>
<tr>
<th>Device Marking</th>
<th>Device</th>
<th>Package</th>
<th>Eco Status</th>
<th>Packaging Type</th>
<th>Qty per Tube</th>
</tr>
</thead>
<tbody>
<tr>
<td>FGA30N120FTD</td>
<td>FGA30N120FTDU</td>
<td>TO-3PN</td>
<td>RoHS</td>
<td>Tube</td>
<td>30ea</td>
</tr>
</tbody>
</table>

For Fairchild's definition of “green” Eco Status, please visit: http://www.fairchildsemi.com/company/green/rohs_green.html.

Electrical Characteristics of the IGBT

$T_C = 25^\circ C$ unless otherwise noted.

Off Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>B_{VCES}</td>
<td>Collector to Emitter Breakdown Voltage</td>
<td>$V_{GE} = 0V, I_C = 250\mu A$</td>
<td>1200</td>
<td>-</td>
<td>-</td>
<td>V</td>
</tr>
<tr>
<td>I_{CES}</td>
<td>Collector Cut-Off Current</td>
<td>$V_{CE} = V_{CES}, V_{GE} = 0V$</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>mA</td>
</tr>
<tr>
<td>I_{GES}</td>
<td>G-E Leakage Current</td>
<td>$V_{GE} = V_{GES}, V_{CE} = 0V$</td>
<td>-</td>
<td>-</td>
<td>±250</td>
<td>nA</td>
</tr>
</tbody>
</table>

On Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_{GE(th)}$</td>
<td>G-E Threshold Voltage</td>
<td>$I_C = 30mA, V_{CE} = V_{GE}$</td>
<td>3.5</td>
<td>6</td>
<td>7.5</td>
<td>V</td>
</tr>
<tr>
<td>$V_{CE(sat)}$</td>
<td>Collector to Emitter Saturation Voltage</td>
<td>$I_C = 30A, V_{GE} = 15V$</td>
<td>-</td>
<td>1.6</td>
<td>2</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$I_C = 30A, V_{GE} = 15V, T_C = 125^\circ C$</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>V</td>
</tr>
</tbody>
</table>

Dynamic Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_{ies}</td>
<td>Input Capacitance</td>
<td>$V_{CE} = 30V, V_{GE} = 0V, f = 1MHz$</td>
<td>-</td>
<td>5140</td>
<td>-</td>
<td>pF</td>
</tr>
<tr>
<td>C_{ces}</td>
<td>Output Capacitance</td>
<td></td>
<td>-</td>
<td>150</td>
<td>-</td>
<td>pF</td>
</tr>
<tr>
<td>C_{res}</td>
<td>Reverse Transfer Capacitance</td>
<td></td>
<td>-</td>
<td>95</td>
<td>-</td>
<td>pF</td>
</tr>
</tbody>
</table>

Switching Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t_{d(on)}$</td>
<td>Turn-On Delay Time</td>
<td>$V_{CC} = 600V, I_C = 30A, R_G = 10\Omega, V_{GE} = 15V, Resistive Load, T_C = 25^\circ C$</td>
<td>-</td>
<td>31</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>t_r</td>
<td>Rise Time</td>
<td></td>
<td>-</td>
<td>101</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>$t_{d(off)}$</td>
<td>Turn-Off Delay Time</td>
<td>$V_{CC} = 600V, I_C = 30A, R_G = 10\Omega, V_{GE} = 15V, Resistive Load, T_C = 25^\circ C$</td>
<td>-</td>
<td>198</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>t_f</td>
<td>Fall Time</td>
<td></td>
<td>-</td>
<td>259</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>E_{on}</td>
<td>Turn-On Switching Loss</td>
<td></td>
<td>-</td>
<td>0.54</td>
<td>-</td>
<td>mJ</td>
</tr>
<tr>
<td>E_{off}</td>
<td>Turn-Off Switching Loss</td>
<td></td>
<td>-</td>
<td>1.16</td>
<td>1.51</td>
<td>mJ</td>
</tr>
<tr>
<td>E_{gs}</td>
<td>Total Switching Loss</td>
<td></td>
<td>-</td>
<td>1.70</td>
<td>-</td>
<td>mJ</td>
</tr>
<tr>
<td>$t_{d(on)}$</td>
<td>Turn-On Delay Time</td>
<td></td>
<td>-</td>
<td>40</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>t_r</td>
<td>Rise Time</td>
<td></td>
<td>-</td>
<td>127</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>$t_{d(off)}$</td>
<td>Turn-Off Delay Time</td>
<td>$V_{CC} = 600V, I_C = 30A, R_G = 10\Omega, V_{GE} = 15V, Resistive Load, T_C = 125^\circ C$</td>
<td>-</td>
<td>211</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>t_f</td>
<td>Fall Time</td>
<td></td>
<td>-</td>
<td>364</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>E_{on}</td>
<td>Turn-On Switching Loss</td>
<td></td>
<td>-</td>
<td>0.74</td>
<td>-</td>
<td>mJ</td>
</tr>
<tr>
<td>E_{off}</td>
<td>Turn-Off Switching Loss</td>
<td></td>
<td>-</td>
<td>1.63</td>
<td>-</td>
<td>mJ</td>
</tr>
<tr>
<td>E_{gs}</td>
<td>Total Switching Loss</td>
<td></td>
<td>-</td>
<td>2.37</td>
<td>-</td>
<td>mJ</td>
</tr>
<tr>
<td>Q_g</td>
<td>Total Gate Charge</td>
<td></td>
<td>-</td>
<td>208</td>
<td>-</td>
<td>nC</td>
</tr>
<tr>
<td>Q_{ge}</td>
<td>Gate to Emitter Charge</td>
<td>$V_{CE} = 600V, I_C = 30A, V_{GE} = 15V$</td>
<td>-</td>
<td>41</td>
<td>-</td>
<td>nC</td>
</tr>
<tr>
<td>Q_{gc}</td>
<td>Gate to Collector Charge</td>
<td></td>
<td>-</td>
<td>97</td>
<td>-</td>
<td>nC</td>
</tr>
</tbody>
</table>
Electrical Characteristics of the Diode

$T_C = 25^\circ C$ unless otherwise noted

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{FM}</td>
<td>Diode Forward Voltage</td>
<td>$I_F = 30A$</td>
<td>$T_C = 25^\circ C$</td>
<td>-</td>
<td>1.3</td>
<td>1.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$T_C = 125^\circ C$</td>
<td>-</td>
<td>1.3</td>
<td>-</td>
</tr>
<tr>
<td>t_{rr}</td>
<td>Diode Reverse Recovery Time</td>
<td>$I_F = 30A$, $di/dt = 200A/\mu s$</td>
<td>$T_C = 25^\circ C$</td>
<td>-</td>
<td>730</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$T_C = 125^\circ C$</td>
<td>-</td>
<td>775</td>
<td>-</td>
</tr>
<tr>
<td>I_{rr}</td>
<td>Diode Peak Reverse Recovery Current</td>
<td></td>
<td>$T_C = 25^\circ C$</td>
<td>-</td>
<td>43</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$T_C = 125^\circ C$</td>
<td>-</td>
<td>47</td>
<td>-</td>
</tr>
<tr>
<td>Q_{rr}</td>
<td>Diode Reverse Recovery Charge</td>
<td></td>
<td>$T_C = 25^\circ C$</td>
<td>-</td>
<td>5.9</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$T_C = 125^\circ C$</td>
<td>-</td>
<td>18.2</td>
<td>-</td>
</tr>
</tbody>
</table>
Typical Performance Characteristics

Figure 7. Saturation Voltage vs. V_{GE}

![Graph showing saturation voltage vs. gate-emitter voltage for different collector-emitter voltages and temperatures.]

Common Emitter
$T_C = 125^\circ C$

30A
$I_C = 15A$
60A

Figure 8. Capacitance Characteristics

![Graph showing capacitance characteristics for different collector-emitter voltages and temperatures.]

Common Emitter
$V_{CE} = 0V$, $f = 1MHz$
$T_C = 25^\circ C$
$C_{jao}, C_{jeb}, C_{res}$

Figure 9. Gate charge Characteristics

![Graph showing gate charge characteristics for different collector-emitter voltages and temperatures.]

Common Emitter
$T_C = 25^\circ C$

$V_{CC} = 200V, 400V, 600V$

$Q_g, I_C = 30A$

Figure 10. SOA Characteristics

![Graph showing stress conditions for different collector-emitter voltages and temperatures.]

Common Emitter
$V_{CC} = 600V, V_{GE} = 15V$
$T_C = 25^\circ C$
$T_C = 125^\circ C$
t_{on}, t_{off}

Figure 11. Turn-on Characteristics vs. Gate Resistance

![Graph showing turn-on characteristics vs. gate resistance for different collector-emitter voltages and temperatures.]

Common Emitter
$V_{CC} = 600V, V_{GE} = 15V$
$I_C = 30A$
$T_C = 25^\circ C$
$T_C = 125^\circ C$

Figure 12. Turn-off Characteristics vs. Gate Resistance

![Graph showing turn-off characteristics vs. gate resistance for different collector-emitter voltages and temperatures.]

Common Emitter
$V_{CC} = 600V, V_{GE} = 15V$
$I_C = 30A$
$T_C = 25^\circ C$
$T_C = 125^\circ C$

*Notes:
1. $T_C = 25^\circ C$
2. $T_J = 150^\circ C$
3. Single Pulse

©2009 Fairchild Semiconductor Corporation
FGH30N120FTD Rev. C0
5
www.fairchildsemi.com
Typical Performance Characteristics

Figure 13. Turn-on Characteristics vs. Collector Current

Figure 14. Turn-off Characteristics vs. Collector Current

Figure 15. Switching Loss vs. Gate Resistance

Figure 16. Switching Loss vs. Collector Current

Figure 17. Turn-off Switching SOA Characteristics

Figure 18. Forward Characteristics

©2009 Fairchild Semiconductor Corporation
www.fairchildsemi.com
Typical Performance Characteristics

Figure 19. Reverse Current

Reverse Recovery Current, I_{rr} [A]

$di/dt = 100A/\mu s$

$di/dt = 200A/\mu s$

Forward Current, I_F [A]

Figure 20. Stored Charge

Stored Recovery Charge, Q_{rr} [μC]

$di/dt = 100A/\mu s$

$di/dt = 200A/\mu s$

Forward Current, I_F [A]

Figure 21. Reverse Recovery Time

Reverse Recovery Time, t_{rr} [ns]

$di/dt = 100A/\mu s$

$di/dt = 200A/\mu s$

Forward Current, I_F [A]

Figure 22. Transient Thermal Impedance of IGBT

Thermal Response [C/C]

Rectangular Pulse Duration [sec]
Mechanical Dimensions

TO-3PN

Dimensions in Millimeters
TRADEMARKS
The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

2Cool™
AccuPower™
AX-CAP™
BitSiC™
Build it Now™
CorePLUS™
CoreSiC™
CROSSVOLT™
CTL™
Current Transfer Logic™
DEUXPEED®
Dual Cool™
EcoSiPARK®
EfficientMax™
ESBiC™
Fairchild®
Fairchild Semiconductor®
FACT Quiet Series™
FACT®
FAST™
FastCore™
FETBench™
FPS™
F-FPS™
FRFET®
Global Power ResourceSM
Green Bridge™
Green FPS™
Green FPS™ e-Series™
Gmax™
GTO™
IntelliMAX™
ISOPLANAR™
Marking Small Speakers Sound Louder
and Better™
MegaBuck™
MICROCOUPLER™
MicroFET™
MicroPak™
MicroPak™
MillerDrive™
MotionMax™
mWSaver™
OptiHE™
OPTOLOGIC®
OPTOPLANAR®
PowerTrench®
PowerXS™
Programmable Active Droop™
QFET®
QS™
Quiet Series™
RapidConfigure™
Saving our world, 1mW/1W/kW at a time™
SignalWise™
SmartMax™
SMART START™
Solutions for Your Success™
SPM®
STEALTH™
SuperFET®
SuperSOT™-3
SuperSOT™-6
SuperSOT™-8
SuproMOS®
SyncFET™
Sync-Lock™
SYSTEM GENERAL
TinyBoost™
TinyBuck™
TinyCalc™
TinyLogic™
TINYOPTO™
TinyPower™
TinyPWM™
TinyWire™
TranSiC®
Trifault Detect™
TRUECURRENT®, µSerDes™
Ultra FRFET™
UnIFET™
VCX™
VisualMax™
VoltagePlus™
XS™

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used here in:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
2. A critical component in any component of a life support device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY
Fairchild Semiconductor Corporation’s Anti-Counterfeiting Policy. Fairchild’s Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support. Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild’s quality standards for handling and storage and provide access to Fairchild’s full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS
Definition of Terms

<table>
<thead>
<tr>
<th>Datasheet Identification</th>
<th>Product Status</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advance Information</td>
<td>Formative / In Design</td>
<td>Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.</td>
</tr>
<tr>
<td>Preliminary</td>
<td>First Production</td>
<td>Datasheet contains preliminary data; additional data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.</td>
</tr>
<tr>
<td>No Identification Needed</td>
<td>Full Production</td>
<td>Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.</td>
</tr>
<tr>
<td>Obsolete</td>
<td>Not In Production</td>
<td>Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.</td>
</tr>
</tbody>
</table>

Rev. 66