To learn more about ON Semiconductor, please visit our website at www.onsemi.com

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor’s system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.
FGA3060ADF
600 V, 30 A Field Stop Trench IGBT

Features
- Maximum Junction Temperature: $T_J = 175^\circ C$
- Positive Temperature Co-efficient for Easy Parallel Operating
- High Current Capability
- Low Saturation Voltage: $V_{CE(sat)} = 1.8 \text{ V(Typ.)} @ I_C = 30 \text{ A}$
- 100% of the Parts Tested for $I_{LM(1)}$
- High Input Impedance
- Fast Switching
- Tighten Parameter Distribution
- RoHS Compliant

General Description
This ADF IGBT series adopted Field Stop Trench 3rd generation IGBT which offer extreme low $V_{CE(sat)}$ and much faster switching characteristics for outstanding efficiency. And this kind of technology is fully optimized to variety PFC (Power Factor Correction) topology: Single boost, Multi channel interleaved etc with over 20KHz switching performance. TO3P package provide Super Low thermal resistance for much wider SOA for system stability.

Applications
- PFC topology for Home appliance: Single Boost, Multi channel Interleaved etc.

Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>FGA3060ADF</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{CES}</td>
<td>Collector to Emitter Voltage</td>
<td>600</td>
<td>V</td>
</tr>
<tr>
<td>V_{GES}</td>
<td>Gate to Emitter Voltage</td>
<td>± 20</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>Transient Gate to Emitter Voltage</td>
<td>± 30</td>
<td>V</td>
</tr>
<tr>
<td>I_C</td>
<td>Collector Current @ $T_C = 25^\circ C$</td>
<td>60</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>Collector Current @ $T_C = 100^\circ C$</td>
<td>30</td>
<td>A</td>
</tr>
<tr>
<td>$I_{LM(1)}$</td>
<td>Pulsed Collector Current @ $T_C = 25^\circ C$</td>
<td>90</td>
<td>A</td>
</tr>
<tr>
<td>$I_{CM(2)}$</td>
<td>Pulsed Collector Current</td>
<td>90</td>
<td>A</td>
</tr>
<tr>
<td>$I_F(3)$</td>
<td>Diode Forward Current @ $T_C = 25^\circ C$</td>
<td>3</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>Diode Forward Current @ $T_C = 100^\circ C$</td>
<td>1.5</td>
<td>A</td>
</tr>
<tr>
<td>$I_{FM(2)}$</td>
<td>Pulsed Diode Maximum Forward Current</td>
<td>6</td>
<td>A</td>
</tr>
<tr>
<td>P_D</td>
<td>Maximum Power Dissipation @ $T_C = 25^\circ C$</td>
<td>176</td>
<td>W</td>
</tr>
<tr>
<td></td>
<td>Maximum Power Dissipation @ $T_C = 100^\circ C$</td>
<td>88</td>
<td>W</td>
</tr>
<tr>
<td>T_J</td>
<td>Operating Junction Temperature</td>
<td>-55 to +175</td>
<td>^\circ C</td>
</tr>
<tr>
<td>T_{stg}</td>
<td>Storage Temperature Range</td>
<td>-55 to +175</td>
<td>^\circ C</td>
</tr>
<tr>
<td>T_L</td>
<td>Maximum Lead Temp. for soldering Purposes, 1/8” from case for 5 seconds</td>
<td>300</td>
<td>^\circ C</td>
</tr>
</tbody>
</table>

Notes:
1. $V_{CC} = 400 \text{ V, } V_{GE} = 15 \text{ V, } I_C = 90 \text{ A, } R_D = 120 \Omega$, Inductive Load.
2. Repetitive rating: Pulse width limited by max. junction temperature.
3. The purpose of diode is protection for negative voltage.
Thermal Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Parameter</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>$R_{thJC(IGBT)}$</td>
<td>Thermal Resistance, Junction to Case, Max.</td>
<td>FGA3060ADF</td>
<td>0.85</td>
</tr>
<tr>
<td>$R_{thJC(Diode)}$</td>
<td>Thermal Resistance, Junction to Case, Max.</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>R_{thJA}</td>
<td>Thermal Resistance, Junction to Ambient, Max.</td>
<td></td>
<td>40</td>
</tr>
</tbody>
</table>

Package Marking and Ordering Information

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Top Mark</th>
<th>Package</th>
<th>Packing Method</th>
<th>Reel Size</th>
<th>Tape Width</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>FGA3060ADF</td>
<td>FGA3060ADF</td>
<td>TO-3PN</td>
<td>Tube</td>
<td>-</td>
<td>-</td>
<td>30</td>
</tr>
</tbody>
</table>

Electrical Characteristics of the IGBT \(T_C = 25°C \) unless otherwise noted

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B\text{VCES}$</td>
<td>Collector to Emitter Breakdown Voltage $V_{GE} = 0 \text{ V}, I_C = 1 \text{ mA}$</td>
<td>$V_{GE} = 0 \text{ V}, I_C = 1 \text{ mA}$</td>
<td>600</td>
<td>-</td>
<td>-</td>
<td>V</td>
</tr>
<tr>
<td>$\Delta B\text{VCES} / \Delta T_J$</td>
<td>Temperature Coefficient of Breakdown Voltage $I_C = 1 \text{ mA, Reference to 25°C}$</td>
<td>$I_C = 1 \text{ mA, Reference to 25°C}$</td>
<td>-</td>
<td>0.52</td>
<td>-</td>
<td>V/°C</td>
</tr>
<tr>
<td>I_CES</td>
<td>Collector Cut-Off Current $V_{CE} = V_{CES}, V_{GE} = 0 \text{ V}$</td>
<td>$V_{CE} = V_{CES}, V_{GE} = 0 \text{ V}$</td>
<td>-</td>
<td>-</td>
<td>250</td>
<td>μA</td>
</tr>
<tr>
<td>I_GES</td>
<td>G-E Leakage Current $V_{GE} = V_{GES}, V_{CE} = 0 \text{ V}$</td>
<td>$V_{GE} = V_{GES}, V_{CE} = 0 \text{ V}$</td>
<td>-</td>
<td>-</td>
<td>±400</td>
<td>nA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_{GE(\text{th})}$</td>
<td>G-E Threshold Voltage $I_C = 30 \text{ mA, } V_{CE} = V_{GE}$</td>
<td>$I_C = 30 \text{ mA, } V_{CE} = V_{GE}$</td>
<td>4.1</td>
<td>5.6</td>
<td>7.6</td>
<td>V</td>
</tr>
<tr>
<td>$V_{CE(\text{sat})}$</td>
<td>Collector to Emitter Saturation Voltage $I_C = 30 \text{ A, } V_{GE} = 15 \text{ V}$</td>
<td>$I_C = 30 \text{ A, } V_{GE} = 15 \text{ V}$</td>
<td>-</td>
<td>1.8</td>
<td>2.3</td>
<td>V</td>
</tr>
<tr>
<td>V_{CES}</td>
<td>Collector Cut-Off Voltage $V_{CE} = V_{CES}, V_{GE} = 0 \text{ V}$</td>
<td>$I_C = 30 \text{ A, } V_{GE} = 15 \text{ V}, T_{C} = 175\text{°C}$</td>
<td>-</td>
<td>2.4</td>
<td>-</td>
<td>V</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_{ies}</td>
<td>Input Capacitance</td>
<td>$V_{CE} = 30 \text{ V, } V_{GE} = 0 \text{ V}, f = 1\text{MHz}$</td>
<td>-</td>
<td>1072</td>
<td>-</td>
<td>pF</td>
</tr>
<tr>
<td>C_{oes}</td>
<td>Output Capacitance</td>
<td>$V_{CE} = 30 \text{ V, } V_{GE} = 0 \text{ V}, f = 1\text{MHz}$</td>
<td>-</td>
<td>36</td>
<td>-</td>
<td>pF</td>
</tr>
<tr>
<td>C_{res}</td>
<td>Reverse Transfer Capacitance</td>
<td>$V_{CE} = 30 \text{ V, } V_{GE} = 0 \text{ V}, f = 1\text{MHz}$</td>
<td>-</td>
<td>13</td>
<td>-</td>
<td>pF</td>
</tr>
</tbody>
</table>

Dynamic Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>$I_{d(on)}$</td>
<td>Turn-On Delay Time</td>
<td>$V_{CC} = 400 \text{ V, } I_C = 30 \text{ A, } R_G = 6 \text{ Ω, } V_{GE} = 15 \text{ V, Inductive Load, } T_{C} = 25\text{°C}$</td>
<td>12</td>
<td>19.2</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>I_T</td>
<td>Rise Time</td>
<td>$V_{CC} = 400 \text{ V, } I_C = 30 \text{ A, } R_G = 6 \text{ Ω, } V_{GE} = 15 \text{ V, Inductive Load, } T_{C} = 25\text{°C}$</td>
<td>42.4</td>
<td>-</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>$I_{d(\text{off})}$</td>
<td>Turn-Off Delay Time</td>
<td>$V_{CC} = 400 \text{ V, } I_C = 30 \text{ A, } R_G = 6 \text{ Ω, } V_{GE} = 15 \text{ V, Inductive Load, } T_{C} = 25\text{°C}$</td>
<td>7.2</td>
<td>6.3</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>E_{on}</td>
<td>Turn-On Switching Loss</td>
<td>$V_{CC} = 400 \text{ V, } I_C = 30 \text{ A, } R_G = 6 \text{ Ω, } V_{GE} = 15 \text{ V, Inductive Load, } T_{C} = 25\text{°C}$</td>
<td>960</td>
<td>-</td>
<td>-</td>
<td>uJ</td>
</tr>
<tr>
<td>E_{off}</td>
<td>Turn-Off Switching Loss</td>
<td>$V_{CC} = 400 \text{ V, } I_C = 30 \text{ A, } R_G = 6 \text{ Ω, } V_{GE} = 15 \text{ V, Inductive Load, } T_{C} = 25\text{°C}$</td>
<td>165</td>
<td>-</td>
<td>-</td>
<td>uJ</td>
</tr>
<tr>
<td>E_{ts}</td>
<td>Total Switching Loss</td>
<td>$V_{CC} = 400 \text{ V, } I_C = 30 \text{ A, } R_G = 6 \text{ Ω, } V_{GE} = 15 \text{ V, Inductive Load, } T_{C} = 25\text{°C}$</td>
<td>1125</td>
<td>-</td>
<td>-</td>
<td>uJ</td>
</tr>
</tbody>
</table>

Switching Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>$I_{d(on)}$</td>
<td>Turn-On Delay Time</td>
<td>$V_{CC} = 400 \text{ V, } I_C = 30 \text{ A, } R_G = 6 \text{ Ω, } V_{GE} = 15 \text{ V, Inductive Load, } T_{C} = 175\text{°C}$</td>
<td>12.8</td>
<td>12.8</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>I_T</td>
<td>Rise Time</td>
<td>$V_{CC} = 400 \text{ V, } I_C = 30 \text{ A, } R_G = 6 \text{ Ω, } V_{GE} = 15 \text{ V, Inductive Load, } T_{C} = 175\text{°C}$</td>
<td>27.2</td>
<td>27.2</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>$I_{d(\text{off})}$</td>
<td>Turn-Off Delay Time</td>
<td>$V_{CC} = 400 \text{ V, } I_C = 30 \text{ A, } R_G = 6 \text{ Ω, } V_{GE} = 15 \text{ V, Inductive Load, } T_{C} = 175\text{°C}$</td>
<td>46.4</td>
<td>46.4</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>I_T</td>
<td>Rise Time</td>
<td>$V_{CC} = 400 \text{ V, } I_C = 30 \text{ A, } R_G = 6 \text{ Ω, } V_{GE} = 15 \text{ V, Inductive Load, } T_{C} = 175\text{°C}$</td>
<td>12.8</td>
<td>12.8</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>E_{on}</td>
<td>Turn-On Switching Loss</td>
<td>$V_{CC} = 400 \text{ V, } I_C = 30 \text{ A, } R_G = 6 \text{ Ω, } V_{GE} = 15 \text{ V, Inductive Load, } T_{C} = 175\text{°C}$</td>
<td>1430</td>
<td>-</td>
<td>-</td>
<td>uJ</td>
</tr>
<tr>
<td>E_{off}</td>
<td>Turn-Off Switching Loss</td>
<td>$V_{CC} = 400 \text{ V, } I_C = 30 \text{ A, } R_G = 6 \text{ Ω, } V_{GE} = 15 \text{ V, Inductive Load, } T_{C} = 175\text{°C}$</td>
<td>310</td>
<td>-</td>
<td>-</td>
<td>uJ</td>
</tr>
<tr>
<td>E_{ts}</td>
<td>Total Switching Loss</td>
<td>$V_{CC} = 400 \text{ V, } I_C = 30 \text{ A, } R_G = 6 \text{ Ω, } V_{GE} = 15 \text{ V, Inductive Load, } T_{C} = 175\text{°C}$</td>
<td>1740</td>
<td>-</td>
<td>-</td>
<td>uJ</td>
</tr>
</tbody>
</table>
Electrical Characteristics of the IGBT

(Continued)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q_g</td>
<td>Total Gate Charge</td>
<td>$V_{CE} = 400 , \text{V}$, $I_C = 30 , \text{A}$, $V_{GE} = 15 , \text{V}$</td>
<td>-</td>
<td>37.4</td>
<td>-</td>
<td>nC</td>
</tr>
<tr>
<td>Q_{ge}</td>
<td>Gate to Emitter Charge</td>
<td>$V_{CE} = 400 , \text{V}$, $I_C = 30 , \text{A}$, $V_{GE} = 15 , \text{V}$</td>
<td>-</td>
<td>7.2</td>
<td>-</td>
<td>nC</td>
</tr>
<tr>
<td>Q_{gc}</td>
<td>Gate to Collector Charge</td>
<td>$V_{CE} = 400 , \text{V}$, $I_C = 30 , \text{A}$, $V_{GE} = 15 , \text{V}$</td>
<td>-</td>
<td>15</td>
<td>-</td>
<td>nC</td>
</tr>
</tbody>
</table>

Electrical Characteristics of the Diode

$T_C = 25^\circ\text{C}$ unless otherwise noted

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{FM}</td>
<td>Diode Forward Voltage</td>
<td>$I_F = 3 , \text{A}$</td>
<td>$T_C = 25^\circ\text{C}$</td>
<td>-</td>
<td>1.6</td>
<td>2.3</td>
</tr>
<tr>
<td>E_{rec}</td>
<td>Reverse Recovery Energy</td>
<td>$T_C = 25^\circ\text{C}$</td>
<td>-</td>
<td>1.4</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>τ_{rr}</td>
<td>Diode Reverse Recovery Time</td>
<td>$T_C = 25^\circ\text{C}$</td>
<td>-</td>
<td>29.7</td>
<td>-</td>
<td>uJ</td>
</tr>
<tr>
<td>Q_{rr}</td>
<td>Diode Reverse Recovery Charge</td>
<td>$T_C = 25^\circ\text{C}$</td>
<td>-</td>
<td>35</td>
<td>-</td>
<td>nC</td>
</tr>
</tbody>
</table>

$I_F = 3 \, \text{A}$, $dI_F/dt = 200 \, \text{A/\mu s}$, $V_R = 400 \, \text{V}$	$T_C = 175^\circ\text{C}$	26	-		ns
$I_F = 3 \, \text{A}$, $dI_F/dt = 200 \, \text{A/\mu s}$, $V_R = 400 \, \text{V}$	$T_C = 175^\circ\text{C}$	153	-		
$T_C = 25^\circ\text{C}$	-	35	-	nC	
$T_C = 175^\circ\text{C}$	-	305	-		
Typical Performance Characteristics

Figure 1. Typical Output Characteristics

Figure 2. Typical Output Characteristics

Figure 3. Typical Saturation Voltage Characteristics

Figure 4. Saturation Voltage vs. Case Temperature at Variant Current Level

Figure 5. Saturation Voltage vs. V_{GE}

Figure 6. Saturation Voltage vs. V_{GE}
Typical Performance Characteristics

Figure 7. Capacitance Characteristics
- Collector-Emitter Voltage, V_{CE} vs. Capacitance, C_{ies}, C_{oss}, C_{res}
- Common Emitter
 - $V_{GE} = 0V$, $f = 1MHz$
 - $T_C = 25^\circ C$

Figure 8. Gate charge Characteristics
- Gate-Emitter Voltage, V_{GE} vs. Gate charge, Q_g
- $V_{CC} = 200V$, $400V$
- Common Emitter
 - $T_C = 25^\circ C$

Figure 9. Turn-on Characteristics vs. Gate Resistance
- Switching Time, t_{on}, t_{off} vs. Gate Resistance, R_G
- Common Emitter
 - $V_{CC} = 400V$, $V_{GE} = 15V$
 - $I_C = 30A$
 - $T_C = 25^\circ C$
 - $T_C = 175^\circ C$

Figure 10. Turn-off Characteristics vs. Gate Resistance
- Switching Time, t_{off} vs. Gate Resistance, R_G
- Common Emitter
 - $V_{CC} = 400V$, $V_{GE} = 15V$
 - $I_C = 30A$
 - $T_C = 25^\circ C$
 - $T_C = 175^\circ C$

Figure 11. Switching Loss vs. Gate Resistance
- Switching Loss, E_{on}, E_{off} vs. Gate Resistance, R_G
- Common Emitter
 - $V_{CC} = 400V$, $V_{GE} = 15V$
 - $I_C = 30A$
 - $T_C = 25^\circ C$
 - $T_C = 175^\circ C$

Figure 12. Turn-on Characteristics vs. Collector Current
- Switching Time, t_{on} vs. Collector Current, I_C
- Common Emitter
 - $V_{GE} = 15V$, $R_G = 6\Omega$
 - $T_C = 25^\circ C$
 - $T_C = 175^\circ C$
Typical Performance Characteristics

Figure 13. Turn-off Characteristics vs. Collector Current

Switching Time [ns] vs. Collector Current, Ic [A]

Common Emitter

- $V_{GE} = 15V, R_G = 6\Omega$
- $T_C = 25^\circ C$
- $T_C = 175^\circ C$

Figure 14. Switching Loss vs. Collector Current

Switching Loss [uJ] vs. Collector Current, Ic [A]

Common Emitter

- $V_{GE} = 15V, R_G = 6\Omega$
- $T_C = 25^\circ C$
- $T_C = 175^\circ C$

Figure 15. Load Current Vs. Frequency

Collector Current, [A] vs. Switching Frequency, f [Hz]

Square Wave

- $T_J \leq 175^\circ C$, D = 0.5, $V_{CE} = 400V$
- $V_{GE} = 15/0V, R_G = 6\Omega$
- $T_C = 25^\circ C$
- $T_C = 75^\circ C$
- $T_C = 100^\circ C$

Figure 16. SOA Characteristics

Collector Current, Ic [A] vs. Collector-Emitter Voltage, V_{CE} [V]

Notes:
1. $T_C = 25^\circ C$
2. $T_J = 175^\circ C$
3. Single Pulse

Figure 17. Forward Characteristics

Forward Current, If [A] vs. Forward Voltage, V_F [V]

- $T_C = 175^\circ C$
- $T_C = 25^\circ C$
- $T_C = 75^\circ C$

Figure 18. Reverse Recovery Current

Reverse Recovery Current, Irf [A] vs. Forward Current, If [A]

- $T_C = 25^\circ C$
- $T_C = 175^\circ C$
- $di/dt = 200A/\mu s$
- $di/dt = 100A/\mu s$
Typical Performance Characteristics

Figure 19. Reverse Recovery Time

TC = 25°C
TC = 175°C

Reverse Recovery Time, t_{rr} [ns]

<table>
<thead>
<tr>
<th>Forward Current, I_F [A]</th>
<th>0</th>
<th>2</th>
<th>4</th>
<th>6</th>
<th>8</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_{rr}</td>
<td>0</td>
<td>100</td>
<td>200</td>
<td>300</td>
<td>400</td>
<td>400</td>
</tr>
</tbody>
</table>

di/dt = 100A/μs
di/dt = 200A/μs

Figure 20. Stored Charge

TC = 25°C
TC = 175°C

Stored Recovery Charge, Q_{rr} [nC]

<table>
<thead>
<tr>
<th>Forward Current, I_F [A]</th>
<th>0</th>
<th>2</th>
<th>4</th>
<th>6</th>
<th>8</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q_{rr}</td>
<td>0</td>
<td>100</td>
<td>200</td>
<td>300</td>
<td>400</td>
<td>400</td>
</tr>
</tbody>
</table>

di/dt = 100A/μs
di/dt = 200A/μs

Figure 21. Transient Thermal Impedance of IGBT

Duty Factor, $D = t_1/t_2$

Peak $T_J = P_{DM} \times Z_{thjc} + T_C$

Figure 22. Transient Thermal Impedance of Diode

Duty Factor, $D = t_1/t_2$

Peak $T_J = P_{DM} \times Z_{thjc} + T_C$
Mechanical Dimensions

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild’s worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor’s online packaging area for the most recent package drawings:

http://www.fairchildsemi.com/package/packageDetails.html?id=PN_TT3P0-003

Figure 23. TO-3P 3L - 3LD, T03, PLASTIC, EIAJ SC-65
TRADMARKS
The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

AccuPower™
AttitudeEngine™
Awinda®
AX-CAP™
BitsIC™
Build It Now™
CorePLUS™
CorePOWER™
CROSSVOLT™
CTL™
Current Transfer Logic™
DEUXPEED®
Dual Cool™
EcoSPARK®
EffiicientMax™
ESBC™
Fairchild®
Fairchild Semiconductor®
FACT Quiet Series™
FACT®
FAST®
FastvCore™
FETBench™
FPS™
F-PFS™
FRFET®
Global Power ResourceSM
GreenBridge™
Green FPS™
Green FPS™ e-Series™
Gmax™
GTO™
IntelliMAX™
ISOPLANAR™
Marking Small Speakers Sound louder and Better™
Megabuck™
MICROCOUPLER™
MicroFET™
MicroPak™
MillermDrive™
MotionMax™
MotionGrid®
MT®, MTX®, M1V®, mWSaver®
OptoHiT™
OPTOLOGIC®
OPTOPLANAR®
Power Supply WebDesigner™
PowerTrench™
PowerXS™
Programmable Active Droop™
QFET®
Qs™
Quiet Series™
RapidConfigure™
Saving our world, 1mW/W/kW at a time™
SignalWise™
SmartMax™
SMART START™
Solutions for Your Success™
SPM®
STEALTH™
SuperFET®
SuperSOT™-3
SuperSOT™-6
SuperSOT™-8
SupremOS®
SyncFET™
Sync-Lock™

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. TO OBTAIN THE LATEST, MOST UP-TO-DATE DATASHEET AND PRODUCT INFORMATION, VISIT OUR WEBSITE AT HTTP://WWW.FAIRCHILDSEMICONDUCTOR.COM. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

AUTHORIZED USE
Unless otherwise specified in this data sheet, this product is a standard commercial product and is not intended for use in applications that require extraordinary levels of quality and reliability. This product may not be used in the following applications, unless specifically approved in writing by a Fairchild officer: (1) automotive or other transportation, (2) military/aerospace, (3) any safety critical application – including life critical medical equipment – where the failure of the Fairchild product reasonably would be expected to result in personal injury, death or property damage. Customer’s use of this product is subject to agreement of this Authorized Use policy. In the event of an unauthorized use of Fairchild’s product, Fairchild accepts no liability in the event of product failure. In other respects, this product shall be subject to Fairchild’s Worldwide Terms and Conditions of Sale, unless a separate agreement has been signed by both Parties.

ANTI-COUNTERFEITING POLICY
Fairchild Semiconductor Corporation’s Anti-Counterfeiting Policy. Fairchild’s Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Terms of Use.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild’s quality standards for handling and storage and provide access to Fairchild’s full range of warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS
Definition of Terms

<table>
<thead>
<tr>
<th>Datasheet Identification</th>
<th>Product Status</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advance Information</td>
<td>Formative / In Design</td>
<td>Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.</td>
</tr>
<tr>
<td>Preliminary</td>
<td>First Production</td>
<td>Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.</td>
</tr>
<tr>
<td>No Identification Needed</td>
<td>Full Production</td>
<td>Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.</td>
</tr>
<tr>
<td>Obsolete</td>
<td>Not In Production</td>
<td>Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.</td>
</tr>
</tbody>
</table>