Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor’s system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.
FGA20S140P
1400 V, 20 A Shorted-anode IGBT

Features
- High Speed Switching
- Low Saturation Voltage: $V_{CE(sat)} = 1.9$ V @ $I_C = 20$ A
- High Input Impedance
- RoHS Compliant

Applications
- Induction Heating, Microwave Oven

Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Ratings</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{CES}</td>
<td>Collector to Emitter Voltage</td>
<td>1400</td>
<td>V</td>
</tr>
<tr>
<td>V_{GES}</td>
<td>Gate to Emitter Voltage</td>
<td>±25</td>
<td>V</td>
</tr>
<tr>
<td>I_C</td>
<td>Collector Current @ $T_C = 25^\circ$C</td>
<td>40</td>
<td>A</td>
</tr>
<tr>
<td>$I_{CM(1)}$</td>
<td>Pulsed Collector Current</td>
<td>60</td>
<td>A</td>
</tr>
<tr>
<td>I_F</td>
<td>Diode Continuous Forward Current @ $T_C = 25^\circ$C</td>
<td>40</td>
<td>A</td>
</tr>
<tr>
<td>I_{FD}</td>
<td>Diode Continuous Forward Current @ $T_C = 100^\circ$C</td>
<td>20</td>
<td>A</td>
</tr>
<tr>
<td>P_D</td>
<td>Maximum Power Dissipation @ $T_C = 25^\circ$C</td>
<td>272</td>
<td>W</td>
</tr>
<tr>
<td>P_{DM}</td>
<td>Maximum Power Dissipation @ $T_C = 100^\circ$C</td>
<td>136</td>
<td>W</td>
</tr>
<tr>
<td>T_J</td>
<td>Operating Junction Temperature</td>
<td>-55 to +175</td>
<td>°C</td>
</tr>
<tr>
<td>T_{stg}</td>
<td>Storage Temperature Range</td>
<td>-55 to +175</td>
<td>°C</td>
</tr>
<tr>
<td>T_L</td>
<td>Maximum Lead Temp. for soldering Purposes, 1/8” from case for 5 seconds</td>
<td>300</td>
<td>°C</td>
</tr>
</tbody>
</table>

Thermal Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_{jCj} (IGBT)</td>
<td>Thermal Resistance, Junction to Case</td>
<td>--</td>
<td>0.55</td>
<td>°C/W</td>
</tr>
<tr>
<td>R_{jA}</td>
<td>Thermal Resistance, Junction to Ambient</td>
<td>--</td>
<td>40</td>
<td>°C/W</td>
</tr>
</tbody>
</table>

Notes:
1: Limited by T_{jmax}
Package Marking and Ordering Information

<table>
<thead>
<tr>
<th>Device Marking</th>
<th>Device</th>
<th>Package</th>
<th>Reel Size</th>
<th>Tape Width</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>FGA20S140P</td>
<td>FGA20S140P</td>
<td>TO-3PN</td>
<td>-</td>
<td>-</td>
<td>30</td>
</tr>
</tbody>
</table>

Electrical Characteristics of the IGBT $T_C = 25^\circ\text{C}$ unless otherwise noted

#### Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit

Off Characteristics

- **I_{CES}**: Collector Cut-Off Current
 $V_{CE} = 1400$, $V_{GE} = 0V$
 Min.: 1 mA

- **I_{GES}**: G-E Leakage Current
 $V_{GE} = V_{GES}$, $V_{CE} = 0V$
 Min.: ±500 nA

On Characteristics

- **$V_{GE(th)}$**: G-E Threshold Voltage
 $I_C = 20mA$, $V_{CE} = V_{GE}$
 4.5 | 6.0 | 7.5 | V

- **$V_{CE(sat)}$**: Collector to Emitter Saturation Voltage
 $I_C = 20A$, $V_{GE} = 15V$, $T_C = 25^\circ\text{C}$
 Min.: 1.9 V
 Max.: 2.4 V

 $I_C = 20A$, $V_{GE} = 15V$, $T_C = 125^\circ\text{C}$
 Min.: 2.1 V
 Max.: V

 $I_C = 20A$, $V_{GE} = 15V$, $T_C = 175^\circ\text{C}$
 Min.: 2.2 V
 Max.: V

- **V_{FM}**: Diode Forward Voltage
 $I_F = 20A$, $T_C = 25^\circ\text{C}$
 Min.: 1.7 V
 Max.: 2.4 V

 $I_F = 20A$, $T_C = 175^\circ\text{C}$
 Min.: 2.1 V
 Max.: V

Dynamic Characteristics

- **C_{ies}**: Input Capacitance
 $V_{CE} = 30V$, $V_{GE} = 0V$, $f = 1\text{MHz}$
 Min.: 1686 pF

- **C_{oes}**: Output Capacitance
 $I_C = 20mA$, $V_{CE} = V_{GE}$
 Min.: 45 pF

- **C_{res}**: Reverse Transfer Capacitance
 $I_C = 20mA$, $V_{CE} = V_{GE}$
 Min.: 32 pF

Switching Characteristics

- **$t_d(on)$**: Turn-On Delay Time
 $V_{CC} = 600V$, $I_C = 20A$, $R_G = 10\Omega$, $V_{GE} = 15V$, Resistive Load, $T_C = 25^\circ\text{C}$
 Min.: 20 ns

- **t_r**: Rise Time
 $V_{CC} = 600V$, $I_C = 20A$, $R_G = 10\Omega$, $V_{GE} = 15V$, Resistive Load, $T_C = 25^\circ\text{C}$
 Min.: 245 ns

- **$t_d(off)$**: Turn-Off Delay Time
 $V_{CC} = 600V$, $I_C = 20A$, $R_G = 10\Omega$, $V_{GE} = 15V$, Resistive Load, $T_C = 25^\circ\text{C}$
 Min.: 400 ns

- **t_f**: Fall Time
 $V_{CC} = 600V$, $I_C = 20A$, $R_G = 10\Omega$, $V_{GE} = 15V$, Resistive Load, $T_C = 25^\circ\text{C}$
 Min.: 130 ns

- **E_{on}**: Turn-On Switching Loss
 $V_{CC} = 600V$, $I_C = 20A$, $R_G = 10\Omega$, $V_{GE} = 15V$, Resistive Load, $T_C = 25^\circ\text{C}$
 Min.: 0.76 mJ

- **E_{off}**: Turn-Off Switching Loss
 $V_{CC} = 600V$, $I_C = 20A$, $R_G = 10\Omega$, $V_{GE} = 15V$, Resistive Load, $T_C = 25^\circ\text{C}$
 Min.: 0.56 mJ

- **E_{ts}**: Total Switching Loss
 $V_{CC} = 600V$, $I_C = 20A$, $R_G = 10\Omega$, $V_{GE} = 15V$, Resistive Load, $T_C = 25^\circ\text{C}$
 Min.: 1.32 mJ

- **Q_g**: Total Gate Charge
 $V_{CE} = 600V$, $I_C = 20A$, $V_{GE} = 15V$
 Min.: 203.5 nC

- **Q_{ge}**: Gate to Emitter Charge
 $V_{CE} = 600V$, $I_C = 20A$, $V_{GE} = 15V$
 Min.: 10.8 nC

- **Q_{gc}**: Gate to Collector Charge
 $V_{CE} = 600V$, $I_C = 20A$, $V_{GE} = 15V$
 Min.: 84.6 nC
Typical Performance Characteristics

Figure 1. Typical Output Characteristics

![Graph showing typical output characteristics](image1)

Figure 2. Typical Saturation Voltage Characteristics

![Graph showing typical saturation voltage characteristics](image2)

Figure 3. Typical Saturation Voltage Characteristics

![Graph showing typical saturation voltage characteristics](image3)

Figure 4. Transfer Characteristics

![Graph showing transfer characteristics](image4)

Figure 5. Saturation Voltage vs. Case

![Graph showing saturation voltage vs. case](image5)

Figure 6. Saturation Voltage vs. Vge

![Graph showing saturation voltage vs. Vge](image6)
Typical Performance Characteristics

Figure 7. Saturation Voltage vs. Vge

Figure 8. Capacitance Characteristics

Figure 9. Gate Charge Characteristics

Figure 10. SOA Characteristics

Figure 11. Turn-On Characteristics vs Gate Resistance

Figure 12. Turn-off Characteristics vs Gate Resistance

Notes:
1. TC = 25°C
2. TJ = 175°C
3. Single Pulse

Collector-Emitter Voltage, VCE [V]
Gate-Emitter Voltage, VGE [V]
Capacitance [pF]
Collector-Emitter Voltage, VCE [V]
Gate Charge, Qg [nC]
Switching Time [ns]
Gate Resistance, Rg [Ω]
Typical Performance Characteristics

Figure 13. Turn-on Characteristics VS. Collector Current

Figure 14. Turn-off Characteristics VS. Collector Current

Figure 15. Switching Loss VS. Gate Resistance

Figure 16. Switching Loss VS. Gate Resistance

Figure 17. Turn off Switching SOA Characteristics

Figure 18. Forward Characteristics
Figure 19. Transient Thermal Impedance of IGBT

![Graph showing transient thermal impedance of IGBT](image)

- Duty Factor, $D = t_1/t_2$
- Peak $T_j = P_{dm} \times Z_{thjc} + T_C$

Notes:
- Single pulse
- Rectangular Pulse Duration [sec]
- Thermal Response [Z_{thjc}]
Mechanical Dimensions

Figure 20. TO-3P 3L - 3LD, T03, PLASTIC, EIAJ SC-65

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild’s worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor’s online packaging area for the most recent package drawings:
http://www.fairchildsemi.com/package/packageDetails.html?id=PN_TT3P0-003

Dimensions in Millimeters
TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

AccuPower™ F-PFS™ PowerTrench™ Sync-Lock™
AX-CAP™ FRFET® Programmable Active Droop™ TinyBoost™
BitSIC™ Global Power Resource™ QFT™ TinyBuck®
Build it Now™ GreenBridge™ QS™ TinyCalc™
CorePLUS™ Green FPS™ e-Series™ TinyLogic®
CorePOWER™ Gmax™ GTO™ TINY-OPTO™
CROSSVOLT™ IntelliMAX™ SMART START™ TinyPower™
CTL™ ISOLANAR™ Solutions for Your Success™ TINYPOWER™
Current Transfer Logic™ and Better™ SmartMax™ TynyPWM™
DEUXPEED® MegaBuck™ STEALTH™ TynyWire™
Dual Cool™ MicroBuck™ SuperFET® TriFault Detect™
EcoSPARK® MicroFET™ SuperSOT™-8 TRUECURRENT™
EfficienMax™ MicroPAK™ SuperSOT™-6 I2C™
ESSC™ MicroPAK2™ SuperSOT™-3 SPC™
Fairchild® MillerDrive™ SupreMOS® µWaver®
Fairchild Semiconductor® MotionMax™ VoltagePlus™
FACT Quiet Series™ mWSaver® XS™
FACT® OPTOLOGIC® CorePOWER™
FAST® OPTOPLANAR® CorePLUS™
Fast2Core™ RapidConfigure™ CURRENT™
FETBench™ OPTOPLANAR® INTL™
FPS™

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HERIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH INCLUDES THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used here in:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.

2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation’s Anti-Counterfeiting Policy. Fairchild’s Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support. Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild’s quality standards for handling and storage and provide access to Fairchild’s full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms

<table>
<thead>
<tr>
<th>Datasheet Identification</th>
<th>Product Status</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advance Information</td>
<td>Formative / In Design</td>
<td>Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.</td>
</tr>
<tr>
<td>Preliminary</td>
<td>First Production</td>
<td>Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.</td>
</tr>
<tr>
<td>No Identification Needed</td>
<td>Full Production</td>
<td>Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.</td>
</tr>
<tr>
<td>Obsolete</td>
<td>Not In Production</td>
<td>Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.</td>
</tr>
</tbody>
</table>

Rev. 166