Silicon Carbide (SiC) Schottky Diode – EliteSiC, 10 A, 650 V, D1, DPAK

FFSD1065A

Description

Silicon Carbide (SiC) Schottky Diodes use a completely new technology that provides superior switching performance and higher reliability compared to Silicon. No reverse recovery current, temperature independent switching characteristics, and excellent thermal performance sets Silicon Carbide as the next generation of power semiconductor. System benefits include highest efficiency, faster operating frequency, increased power density, reduced EMI, and reduced system size and cost.

Features

- Max Junction Temperature 175°C
- Avalanche Rated 64 mJ
- High Surge Current Capacity
- Positive Temperature Coefficient
- Ease of Paralleling
- No Reverse Recovery/No Forward Recovery
- This Device is Pb−Free, Halogen Free/BFR Free and RoHS Compliant

Applications

- General Purpose
- SMPS, Solar Inverter, UPS
- Power Switching Circuits

See detailed ordering and shipping information on page 2 of this data sheet.
MAXIMUM RATINGS (T_C = 25°C unless otherwise noted)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Rating</th>
<th>Parameter</th>
<th>FFSD1065A</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{RRM}</td>
<td>Peak Repetitive Reverse Voltage</td>
<td></td>
<td>650</td>
<td>V</td>
</tr>
<tr>
<td>E_{AS}</td>
<td>Single Pulse Avalanche Energy (Note 1)</td>
<td></td>
<td>64</td>
<td>mJ</td>
</tr>
<tr>
<td>I_F</td>
<td>Continuous Rectified Forward Current @ T_C < 158°C</td>
<td></td>
<td>10</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>Continuous Rectified Forward Current @ T_C < 135°C</td>
<td></td>
<td>18</td>
<td>A</td>
</tr>
<tr>
<td>I_{FMAX}</td>
<td>Non-Repetitive Peak Forward Surge Current</td>
<td>T_C = 25°C, 10 μs</td>
<td>760</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T_C = 150°C, 10 μs</td>
<td>740</td>
<td>A</td>
</tr>
<tr>
<td>I_{FSM}</td>
<td>Non-Repetitive Forward Surge Current</td>
<td>Half-Sine Pulse, tp = 8.3 ms</td>
<td>56</td>
<td>A</td>
</tr>
<tr>
<td>I_{FRM}</td>
<td>Repetitive Forward Surge Current</td>
<td>Half-Sine Pulse, tp = 8.3 ms</td>
<td>34</td>
<td>A</td>
</tr>
<tr>
<td>P_{tot}</td>
<td>Power Dissipation</td>
<td>T_C = 25°C</td>
<td>150</td>
<td>W</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T_C = 150°C</td>
<td>25</td>
<td>W</td>
</tr>
<tr>
<td>T_J, T_{STG}</td>
<td>Operating and Storage Temperature Range</td>
<td></td>
<td>-55 to +175</td>
<td>°C</td>
</tr>
</tbody>
</table>

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_{JIC}</td>
<td>Thermal Resistance, Junction to Case, Max.</td>
<td>1.0</td>
<td>°C/W</td>
</tr>
</tbody>
</table>

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

OFF CHARACTERISTICS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Condition</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_F</td>
<td>Forward Voltage</td>
<td>I_F = 10 A, T_C = 25°C</td>
<td>–</td>
<td>1.50</td>
<td>1.75</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>I_F = 10 A, T_C = 125°C</td>
<td>–</td>
<td>1.6</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>I_F = 10 A, T_C = 175°C</td>
<td>–</td>
<td>1.72</td>
<td>2.4</td>
<td></td>
</tr>
<tr>
<td>I_R</td>
<td>Reverse Current</td>
<td>V_R = 650 V, T_C = 25°C</td>
<td>–</td>
<td>–</td>
<td>200</td>
<td>μA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V_R = 650 V, T_C = 125°C</td>
<td>–</td>
<td>–</td>
<td>400</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>V_R = 650 V, T_C = 175°C</td>
<td>–</td>
<td>–</td>
<td>600</td>
<td></td>
</tr>
<tr>
<td>Q_C</td>
<td>Total Capacitive Charge</td>
<td>V = 400 V</td>
<td>–</td>
<td>34</td>
<td>–</td>
<td>nC</td>
</tr>
<tr>
<td>C</td>
<td>Total Capacitance</td>
<td>V_R = 1 V, f = 100 kHz</td>
<td>–</td>
<td>575</td>
<td>–</td>
<td>pF</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V_R = 200 V, f = 100 kHz</td>
<td>–</td>
<td>62</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>V_R = 400 V, f = 100 kHz</td>
<td>–</td>
<td>47</td>
<td>–</td>
<td></td>
</tr>
</tbody>
</table>

1. E_{AS} of 64 mJ is based on starting T_J = 25°C; L = 0.5 mH, I_{AS} = 16 A, V = 50 V.

ORDERING INFORMATION

<table>
<thead>
<tr>
<th>Device</th>
<th>Marking</th>
<th>Package</th>
<th>Reel Size†</th>
<th>Tape Width</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>FFSD1065A</td>
<td>FFSD1065A</td>
<td>DPAK</td>
<td>13“</td>
<td>N/A</td>
<td>2500</td>
</tr>
</tbody>
</table>

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D

www.onsemi.com
TYPICAL CHARACTERISTICS

(T\(_J\) = 25°C UNLESS OTHERWISE NOTED)

Figure 1. Forward Characteristics

Figure 2. Reverse Characteristics

Figure 3. Current Derating

Figure 4. Power Derating

Figure 5. Capacitive Charge vs. Reverse Voltage

Figure 6. Capacitance vs. Reverse Voltage
TYPICAL CHARACTERISTICS (CONTINUED)

(TJ = 25°C UNLESS OTHERWISE NOTED)

![Figure 7. Capacitance Stored Energy](image1)

![Figure 8. Junction-to-Case Transient Thermal Response Curve](image2)

TEST CIRCUIT AND WAVEFORMS

L = 0.5 mH
R < 0.1 Ω
VDD = 50 V
EAVL = 1/2LI2 [(VR(AVL) / (VR(AVL) - VDD)]
Q1 = IGBT (BVces > DUT VR(AVL))

![Figure 9. Unclamped Inductive Switching Test Circuit & Waveform](image3)
MECHANICAL CASE OUTLINE
PACKAGE DIMENSIONS

DPAK3 (TO-252 3 LD)
CASE 369AS
ISSUE A

DATE 28 SEP 2022

NOTES: UNLESS OTHERWISE SPECIFIED
A) THIS PACKAGE CONFORMS TO JEDEC, TO-252,
ISSUE C, VARIATION AA.
B) ALL DIMENSIONS ARE IN MILLIMETERS.
C) DIMENSIONING AND TOLERANCING PER
ASME Y14.5M-2009.
D) SUPPLIER DEPENDENT MOLD LOCKING HOLES OR CHAMFERED
CORNERS OR EDGE PROTRUSION.
E) FOR DIODE PRODUCTS, L4 IS 0.25 MM MAX.
F) DIMENSIONS ARE EXCLUSIVE OF BURRS,
MOLD FLASH AND TIE BAR EXTRUSIONS.
G) LAND PATTERN RECOMMENDATION IS BASED ON IPC7351A STD
T022/MP991X230-3V.

GENERIC MARKING DIAGRAM*

XXX = Specific Device Code
A = Assembly Location
Y = Year
WW = Work Week
ZZ = Assembly Lot Code

*This information is generic. Please refer to
device data sheet for actual part marking.
Pb-Free indicator, “G” or microdot “”, may
or may not be present. Some products may
not follow the Generic Marking.

LAND PATTERN RECOMMENDATION

FOR ADDITIONAL INFORMATION ON OUR
PB-FREE STRATEGY AND SOLDERING
DETAILS, PLEASE DOWNLOAD THE ON
SEMICONDUCTOR SOLDERING AND
MOUNTING TECHNIQUES REFERENCE
MANUAL, SOLLDRM.

DOCUMENT NUMBER: 98AON13810G
DESCRIPTION: DPAK3 (TO-252 3 LD)

Electronic versions are uncontrolled except when accessed directly from the Document Repository.
Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

© Semiconductor Components Industries, LLC, 2019 www.onsemi.com