Silicon Carbide (SiC) Schottky Diode – EliteSiC, 8 A, 650 V, D2, DPAK

FFSD0865B

Silicon Carbide (SiC) Schottky Diodes use a completely new technology that provides superior switching performance and higher reliability compared to Silicon. No reverse recovery current, temperature independent switching characteristics, and excellent thermal performance sets Silicon Carbide as the next generation of power semiconductor. System benefits include highest efficiency, faster operating frequency, increased power density, reduced EMI, and reduced system size and cost.

Features
- Max Junction Temperature 175°C
- Avalanche Rated 33 mJ
- High Surge Current Capacity
- Positive Temperature Coefficient
- Ease of Paralleling
- No Reverse Recovery/No Forward Recovery
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

Applications
- General Purpose
- SMPS, Solar Inverter, UPS
- Power Switching Circuits

MAXIMUM RATINGS (TJ = 25°C unless otherwise noted)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak Repetitive Reverse Voltage</td>
<td>VRRM</td>
<td>650</td>
<td>V</td>
</tr>
<tr>
<td>Single Pulse Avalanche Energy (TJ = 25°C, IL(pk) = 11.5 A, L = 0.5 mH, V = 50 V)</td>
<td>EAS</td>
<td>33</td>
<td>mJ</td>
</tr>
<tr>
<td>Continuous Rectified Forward Current</td>
<td>TF</td>
<td>8.0</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>TC &lt; 153</td>
<td>TF</td>
<td>11.6</td>
</tr>
<tr>
<td></td>
<td>TC &lt; 135</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-Repetitive Peak Forward Surge Current</td>
<td>TF</td>
<td>577</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>TC = 25°C, IP = 10 μs</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TC = 150°C, IP = 10 μs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-Repetitive Forward Surge Current (Half–Sine Pulse)</td>
<td>IFSM</td>
<td>538</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TC = 25°C, IP = 8.3 ms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power Dissipation</td>
<td>Ptot</td>
<td>91</td>
<td>W</td>
</tr>
<tr>
<td></td>
<td>TC = 25°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TC = 150°C</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Operating Junction and Storage Temperature Range</td>
<td>TJ, Tstg</td>
<td>-55 to +175</td>
<td>°C</td>
</tr>
</tbody>
</table>

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

MARKING DIAGRAM

See detailed ordering and shipping information on page 2 of this data sheet.

ORDERING INFORMATION

AYWWZZ
FFS
D0865B

A = Assembly Plant Code
YWW = Date Code (Year & Week)
ZZ = Lot Code
FFSD0865B = Specific Device Code
### THERMAL RESISTANCE

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal Resistance, Junction-to-Case</td>
<td>$R_{JUC}$</td>
<td>1.64</td>
<td>°C/W</td>
</tr>
</tbody>
</table>

### ELECTRICAL CHARACTERISTICS

#### SYMBOL | PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT
--- | --- | --- | --- | --- | --- | ---
\(V_F\) | Forward Voltage | \(I_F = 8.0\ A, T_J = 25^\circ C\) | – | 1.39 | 1.7 | V |
\(I_F = 8.0\ A, T_J = 125^\circ C\) | – | 1.55 | 2.0 |
\(I_F = 8.0\ A, T_J = 175^\circ C\) | – | 1.71 | 2.4 |
\(I_R\) | Reverse Current | \(V_R = 650\ V, T_J = 25^\circ C\) | – | 0.5 | 40 | \(\mu A\) |
\(V_R = 650\ V, T_J = 125^\circ C\) | – | 1.0 | 80 |
\(V_R = 650\ V, T_J = 175^\circ C\) | – | 2.0 | 160 |

#### CHARGES, CAPACITANCES & GATE RESISTANCE

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Min</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
</table>
\(Q_C\) | Total Capacitive Charge | \(V_C = 400\ V\) | – | 22 | – | nC |
\(C_{tot}\) | \(V_R = 1\ V, f = 100\ kHz\) | – | 336 | – | pF |
\(V_R = 200\ V, f = 100\ kHz\) | – | 39 | – |
\(V_R = 400\ V, f = 100\ kHz\) | – | 30 | – |

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

### PART MARKING AND ORDERING INFORMATION

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>TOP MARK</th>
<th>PACKAGE</th>
<th>PACKING METHOD</th>
<th>REEL SIZE</th>
<th>TAPE WIDTH</th>
<th>QUANTITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>FFSD0865B</td>
<td>FFSD0865B</td>
<td>DPAK</td>
<td>Tape &amp; Reel</td>
<td>330 mm</td>
<td>16 mm</td>
<td>2500 units</td>
</tr>
</tbody>
</table>

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
TYPICAL CHARACTERISTICS

Figure 1. Forward Characteristics

Figure 2. Reverse Characteristics

Figure 3. Current Derating

Figure 4. Power Derating

Figure 5. Capacitive Charge vs. Reverse Voltage

Figure 6. Capacitance vs. Reverse Voltage
TYPICAL CHARACTERISTICS (CONTINUED)

Figure 7. Capacitance Stored Energy

Figure 8. Junction-to-Case Transient Thermal Response
MECHANICAL CASE OUTLINE
PACKAGE DIMENSIONS

DPAK3 6.10x6.54x2.29, 4.57P
CASE 369AS
ISSUE B
DATE 20 DEC 2023

NOTES: UNLESS OTHERWISE SPECIFIED
A) THIS PACKAGE CONFORMS TO JEDEC, TO-252,
ISSUE F, VARIATION AA.
B) ALL DIMENSIONS ARE IN MILLIMETERS.
C) DIMENSIONING AND TOLERANCING PER
ASME Y14.5M-2018.
D) SUPPLIER DEPENDENT MOLD LOCKING HOLES OR CHAMFERED
CORNERS OR EDGE PROTRUSION.
E) FOR IODE PRODUCTS, L4 IS 0.25 MM MAX PLASTIC BODY
STUB WITHOUT CENTER LEAD.
F) DIMENSIONS ARE EXCLUSIVE OF BURRS,
MOLD FLASH AND TIE BAR EXTRUSIONS.
G) LAND PATTERN RECOMMENDATION IS BASED ON IPC7351A STD
TO25P9912E39-3N.

*This information is generic. Please refer to
device data sheet for actual part marking.
Pb−Free indicator, “G” or microdot “*”, may
or may not be present. Some products may
not follow the Generic Marking.

Electronic versions are uncontrolled except when accessed directly from the Document Repository.
Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.

© Semiconductor Components Industries, LLC, 2019 www.onsemi.com