

JN Semiconductor®

To kara more about Old Semiconductor, please visit our website at

Please note. As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild questions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officer

March 2025

FDS8958A

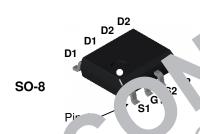
Dual N & P-Channel PowerTrench® MOSFET

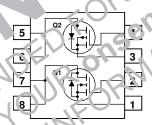
General Description

These dual N- and P-Channel enhancement mode power field effect transistors are produced using Fairchild Semiconductor's advanced PowerTrench process that has been especially tailored to minimize on-state ressitance and yet maintain superior switching performance.

These devices are well suited for low voltage and battery powered applications where low in-line power loss and fast switching are required.

Features


Q1: N-Channel


7.0A, 30V
$$R_{DS(on)} = 0.028\Omega$$
 @ $V_{GS} = 10V$ $R_{DS(on)} = 0.040\Omega$ @ $V - 4.5V$

• Q2: P-Channel

$$-5A$$
, $-30V$ $R_{DS(on)} = 6$ -22Ω @ -1

- Fast switching spe
- High, ver 1 hanc g capability in a widely used sunce, unit uckage

Absolute Max num atings = 25°C unles of the wave noted

Symbol	Parameter	Q1	Q2	Units
Vacq	Prain Jurce Voluage	30	30	V
V _{GS}	Gale-Source Voltage	±20	±20	V
I _D	Drain Current - Continuous (Note 1a)	7	-5	
	- Pu'sed	20	-20	Α
11	Power Dissipation for Dual Operation	2	2	
(N)	Power Dissipation for Single Operation (Note 1a)	1.6	1.6	W
OK	(Note 1c)	0.9	0.9	
Eks	Single Pu'se r valanche Energy (Note 3)	54	13	mJ
T _J , T _{STG}	Operating and Storage Junction Temperature Range	-55 to +	-150	°C

Thermal Characteristics

R _{θJA}	Thermal Resistance, Junction-to-Ambient	(Note 1a)	78	°C/W
R _{eJC}	Thermal Resistance, Junction-to-Case	(Note 1)	40	°C/W

Package Marking and Ordering Information

		y		
Device Marking	Device	Reel Size	Tape width	Quantity
FDS8958A	FDS8958A FDS8958A		12mm	2500 units

$ \begin{array}{ c c c c c c } \hline \Delta T_J & Temperature Coefficient & I_D = -250 \ \mu\text{A}, Referenced to 25^{\circ}\text{C} & Q2 & -23 \\ \hline I_{DSS} & Zero \ Gate \ Voltage \ Drain & V_{DS} = 24 \ V, & V_{GS} = 0 \ V & Q2 & -1 \\ \hline I_{GSSF} & Gate-Body \ Leakage, Forward & V_{GS} = 20 \ V, & V_{DS} = 0 \ V & All & 100 & r \\ \hline I_{GSSR} & Gate-Body \ Leakage, Reverse & V_{GS} = -20 \ V, & V_{DS} = 0 \ V & All & -100 & r \\ \hline \hline On \ Characteristics & (Note 2) & V_{DS} = V_{GS}, & I_D = 250 \ \mu\text{A} & Q1 & 1 & 1.9 & 3 \\ \hline V_{GS(th)} & Gate \ Threshold \ Voltage & V_{DS} = V_{GS}, & I_D = 250 \ \mu\text{A} & Q2 & -1 & 1.7 & -3 \\ \hline \Delta V_{GS(th)} & Gate \ Threshold \ Voltage & V_{DS} = V_{GS}, & I_D = 250 \ \mu\text{A} & Q2 & -1 & 1.7 & -3 \\ \hline \Delta V_{GS(th)} & Gate \ Threshold \ Voltage & I_D = 250 \ \mu\text{A}, \ Referenced to 25^{\circ}\text{C} & Q2 & -1 & 1.7 & -3 \\ \hline \Delta V_{GS(th)} & Gate \ Threshold \ Voltage & I_D = -250 \ \mu\text{A}, \ Referenced to 25^{\circ}\text{C} & Q2 & -1 & 1.7 & -3 \\ \hline A_{DS(on)} & Static \ Drain-Source & V_{GS} = 10 \ V, & I_D = 7 \ A, \ T_J = 125^{\circ}\text{C} & 27 & 42 \\ \hline V_{GS} = 10 \ V, & I_D = 7 \ A, \ T_J = 125^{\circ}\text{C} & 42 & 52 \\ \hline V_{GS} = -10 \ V, & I_D = -5 \ A, \ T_J = 125^{\circ}\text{C} & 42 & 52 \\ \hline V_{GS} = -10 \ V, & I_D = -5 \ A, \ T_J = 125^{\circ}\text{C} & 42 & 52 \\ \hline V_{GS} = -10 \ V, & V_{DS} = V & Q2 & 20 \\ \hline D_{D(on)} & On-State \ Drain \ Current & V_{GS} = 10 \ V, & V_{DS} = V & Q2 & 20 \\ \hline D_{PS} & Forward \ Transconductance & V_{DS} = 5 \ V, & V_D = 7 \ A, \ T_J = 125^{\circ}\text{C} & 7 \ A, \ T_J =$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Symbol	Parameter	Test	Conditions	Туре	Min	Тур	Max	Units
		Off Char	racteristics							•
			Drain-Source Breakdown		•					V
	$ \begin{array}{ c c c c c } \hline \Delta T_J & Temperature Coefficient & I_D = -250 \mu A, Referenced to 25^\circ C & Q2 & -23 \\ \hline I_{DSS} & Zero Gate Voltage Drain & V_{DS} = 24 V, & V_{GS} = 0 V & Q1 & 1 & 1 & \mu \\ \hline Current & V_{DS} = -24 V, & V_{GS} = 0 V & Q2 & -1 & 1 & \mu \\ \hline I_{GSSF} & Gate-Body Leakage, Forward & V_{GS} = 20 V, & V_{DS} = 0 V & All & 1000 & n \\ \hline I_{GSSR} & Gate-Body Leakage, Reverse & V_{GS} = -20 V, & V_{DS} = 0 V & All & -1000 & n \\ \hline \hline \textbf{On Characteristics} & \textbf{(Note 2)} & & & & & & & & & & & & & & & & & & &$	ARVnes					-30	25		mV/°C
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									III V / C
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	I _{DSS}		$V_{DS} = 24 \text{ V},$	$V_{GS} = 0 V$					μΑ
$ \begin{array}{ c c c c c } \hline \textbf{On Characteristics} & \textbf{(Note 2)} \\ \hline \textbf{V}_{GS(th)} & \textbf{Gate Threshold Voltage} & \textbf{V}_{DS} = \textbf{V}_{GS}, & \textbf{I}_{D} = 250~\mu\text{A} & \textbf{Q1} & 1 & 1.9 & 3 \\ \hline \textbf{V}_{DS} = \textbf{V}_{GS}, & \textbf{I}_{D} = -250~\mu\text{A} & \textbf{Q2} & -1 & 1.7 & -3 \\ \hline \textbf{\Delta}\underline{\textbf{V}}_{GS(th)} & \textbf{Gate Threshold Voltage} & \textbf{I}_{D} = 250~\mu\text{A}, & \textbf{Referenced to 25°C} & \textbf{Q1} & -4.5 & -4.5 \\ \hline \textbf{AT}_{J} & \textbf{Temperature Coefficient} & \textbf{I}_{D} = 250~\mu\text{A}, & \textbf{Referenced to 25°C} & \textbf{Q2} & -4.5 & -4.5 \\ \hline \textbf{R}_{DS(on)} & \textbf{Static Drain-Source} & \textbf{V}_{GS} = 10~\textbf{V}, & \textbf{I}_{D} = 7~\textbf{A} & \textbf{Q1} & 19 & 20 & -4.5 \\ \hline \textbf{V}_{GS} = 4.5~\textbf{V}, & \textbf{I}_{D} = 6~\textbf{A} & -4.5 & -4.5 & -4.5 \\ \hline \textbf{V}_{GS} = -10~\textbf{V}, & \textbf{I}_{D} = -5~\textbf{A}, & \textbf{T}_{D} = 125°C & -4.2 & -4.2 & -4.2 \\ \hline \textbf{V}_{CS} = -10~\textbf{V}, & \textbf{I}_{D} = -5~\textbf{A}, & \textbf{T}_{D} = 125°C & -4.2 & -4.2 & -4.2 \\ \hline \textbf{V}_{CS} = -10~\textbf{V}, & \textbf{I}_{D} = -5~\textbf{A}, & \textbf{T}_{D} = 125°C & -4.2 & -4.2 & -4.2 \\ \hline \textbf{V}_{CS} = -10~\textbf{V}, & \textbf{I}_{D} = -5~\textbf{A}, & \textbf{T}_{D} = 125°C & -4.2 & -4.2 & -4.2 \\ \hline \textbf{V}_{CS} = -10~\textbf{V}, & \textbf{I}_{D} = -5~\textbf{A}, & \textbf{T}_{D} = 125°C & -4.2 & -4.2 & -4.2 \\ \hline \textbf{V}_{CS} = -10~\textbf{V}, & \textbf{I}_{D} = -5~\textbf{A}, & \textbf{T}_{D} = 125°C & -4.2 & -4.2 & -4.2 \\ \hline \textbf{V}_{CS} = -10~\textbf{V}, & \textbf{V}_{DS} = \textbf{V} & -4.2 & -4.2 & -4.2 \\ \hline \textbf{Q}_{CS} = -10~\textbf{V}, & \textbf{V}_{DS} = \textbf{V} & -4.2 & -4.2 & -4.2 \\ \hline \textbf{Q}_{CS} = -10~\textbf{V}, & \textbf{V}_{DS} = \textbf{V} & -4.2 & -4.2 & -4.2 \\ \hline \textbf{Q}_{CS} = -10~\textbf{V}, & \textbf{V}_{DS} = \textbf{V} & -4.2 & -4.2 & -4.2 \\ \hline \textbf{Q}_{CS} = -10~\textbf{V}, & \textbf{V}_{DS} = \textbf{V} & -4.2 & -4.2 & -4.2 \\ \hline \textbf{Q}_{CS} = -10~\textbf{V}, & \textbf{V}_{DS} = \textbf{V} & -4.2 & -4.2 & -4.2 \\ \hline \textbf{Q}_{CS} = -10~\textbf{V}, & \textbf{V}_{DS} = \textbf{V} & -4.2 & -4.2 & -4.2 \\ \hline \textbf{Q}_{CS} = -10~\textbf{V}, & \textbf{V}_{DS} = \textbf{V} & -4.2 & -4.2 \\ \hline \textbf{Q}_{CS} = -10~\textbf{V}, & \textbf{V}_{DS} = \textbf{V} & -4.2 & -4.2 \\ \hline \textbf{Q}_{CS} = -10~\textbf{V}, & \textbf{V}_{DS} = \textbf{V} & -4.2 & -4.2 \\ \hline \textbf{Q}_{CS} = -10~\textbf{V}, & \textbf{V}_{DS} = \textbf{V} & -4.2 & -4.2 \\ \hline \textbf{Q}_{CS} = -10~\textbf{V}, & \textbf{V}_{DS} = \textbf{V} & -4.2 & -4.2 \\ \hline \textbf{Q}_{CS} = -10~\textbf{V}, & \textbf{V}_{DS} = \textbf{V} & -4.2 & -4.2 \\ \hline \textbf{Q}_{CS} = -10~\textbf{V}, & \textbf{V}_{DS} = \textbf$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	I _{GSSF}		$V_{GS} = 20 \text{ V},$	$V_{DS} = 0 \text{ V}$					nA
$ \begin{array}{ c c c c c c } \hline V_{GS(th)} & Gate Threshold Voltage & V_{DS} = V_{GS}, & I_D = 250 \ \mu A & Q1 & 1 & 1.9 & 3 \\ \hline V_{DS} = V_{GS}, & I_D = -250 \ \mu A & Q2 & -1 & 1.7 & -3 \\ \hline \Delta V_{GS(th)} & Gate Threshold Voltage & I_D = 250 \ \mu A, & Referenced to 25°C & Q1 & -4.5 \\ \hline \Delta T_J & Temperature Coefficient & I_D = -250 \ \mu A, & Referenced to 25°C & Q2 & -4.5 \\ \hline R_{DS(on)} & Static Drain-Source & V_{GS} = 10 \ V, & I_D = 7 \ A, & T_J = 125°C & 27 & 42 \\ \hline V_{GS} = 10 \ V, & I_D = 6 \ A & -4.5 & -4.5 \\ \hline V_{GS} = -10 \ V, & I_D = -5 \ A & -5.5 & -5.5 \\ \hline I_{D(on)} & On-State Drain Current & V_{GS} = 10 \ V, & V_{DS} = V & Q2 & -20 \\ \hline S_{FS} & Forward Transconductance & V_{DS} = 5 \ V, & V_D = 7 \ A, & V_D$	$ \begin{array}{ c c c c c c c c } \hline V_{GS(th)} & Gate Threshold Voltage & V_{DS} = V_{GS}, & I_D = 250 \ \mu A & Q1 & 1 & 1.9 & 3 & V_{DS} = V_{GS}, & I_D = -250 \ \mu A & Q2 & -1 & 1.7 & -3 & V_{DS} = V_{DS}, & I_D = -250 \ \mu A & Q2 & -1 & 1.7 & -3 & V_{DS} = V_{DS}, & I_D = -250 \ \mu A & Q2 & -1 & 1.7 & -3 & V_{DS} = -250 \ \mu A & Q2 & -1 & 1.7 & -1.7 & -3 & V_{DS} = -250 \ \mu A & Q2 & -1 & 1.7 & -1.7 & -1.7 & -1.7 \ \mu A & Q2 & -1.7 & -1.7 & -1.7 & -1.7 & -1.7 \ \mu A & Q2 & -1.7 & -1.7 & -1.7 & -1.7 & -1.7 \ \mu A & Q2 & -1.7 & -1.7 & -1.7 & -1.7 & -1.7 \ \mu A & Q2 & -1.7 & -1.7 & -1.7 & -1.7 & -1.7 \ \mu A & Q2 & -1.7 & -1.7 & -1.7 & -1.7 \ \mu A & Q2 & -1.7 & -1.7 & -1.7 & -1.7 \ \mu A & Q2 & -1.7 & -1.7 & -1.7 & -1.7 \ \mu A & Q2 & -1.7 & -1.7 & -1.7 & -1.7 \ \mu A & Q2 & -1.7 & -1.7 & -1.7 & -1.7 \ \mu A & Q2 & -1.7 & -1.7 & -1.7 & -1.7 \ \mu A & Q2 & -1.7 & -1.7 & -1.7 & -1.7 \ \mu A & Q2 & -1.7 & -1.7 & -1.7 & -1.7 \ \mu A & Q2 & -1.7 & -1.7 & -1.7 & -1.7 \ \mu A & Q2 & -1.7 & -1.7 & -1.7 & -1.7 \ \mu A & Q2 & -1.7 & -1.7 & -1.7 \ \mu A & Q2 & -1.7 & -1.7 & -1.7 \ \mu A & Q2 & -1$	I _{GSSR}	Gate-Body Leakage, Reverse			All			-100	nA
$ \begin{array}{ c c c c c c } \hline V_{GS(th)} & Gate Threshold Voltage & V_{DS} = V_{GS}, & I_D = 250 \ \mu A & Q1 & 1 & 1.9 & 3 \\ \hline V_{DS} = V_{GS}, & I_D = -250 \ \mu A & Q2 & -1 & 1.7 & -3 \\ \hline \Delta V_{GS(th)} & Gate Threshold Voltage & I_D = 250 \ \mu A, & Referenced to 25°C & Q1 & -4.5 \\ \hline \Delta T_J & Temperature Coefficient & I_D = -250 \ \mu A, & Referenced to 25°C & Q2 & -4.5 \\ \hline R_{DS(on)} & Static Drain-Source & V_{GS} = 10 \ V, & I_D = 7 \ A, & T_J = 125°C & 27 & 42 \\ \hline V_{GS} = 10 \ V, & I_D = 6 \ A & -4.0 \\ \hline V_{GS} = -10 \ V, & I_D = -5 \ A, & T_J = 25°C & 27 & 78 \\ \hline V_{GS} = -10 \ V, & I_D = -5 \ A, & T_J = 25°C & 27 & 78 \\ \hline V_{GS} = -10 \ V, & I_D = -5 \ A, & T_J = 25°C & 27 & 78 \\ \hline V_{GS} = -10 \ V, & I_D = -5 \ A, & T_J = 25°C & 27 & 78 \\ \hline V_{GS} = -10 \ V, & T_J = -5 \ A, & T_J = 25°C & 27 & 78 \\ \hline V_{GS} = -10 \ V, & T_J = -5 \ A, & T_J = 25°C & 27 & 78 \\ \hline V_{GS} = -10 \ V, & T_J = -5 \ A, & T_J = 25°C & 27 & 78 \\ \hline V_{GS} = -10 \ V, & T_J = -5 \ A, & T_J = 25°C & 27 & 78 \\ \hline V_{GS} = -10 \ V, & T_J = -5 \ A, & T_J = 25°C & 27 & 78 \\ \hline V_{GS} = -10 \ V, & T_J = -5 \ A, & T_J = 25°C & 27 & 78 \\ \hline V_{GS} = -10 \ V, & T_J = -5 \ A, & T_J = 25°C & 27 & 78 \\ \hline V_{GS} = -10 \ V, & T_J = -5 \ A, & T_J = 25°C & 27 & 78 \\ \hline V_{GS} = -10 \ V, & T_J = -5 \ A, & T_J = 25°C & 27 & 27 \\ \hline V_{GS} = -10 \ V, & T_J = -5 \ A, & T_J = 25°C & 27 & 27 \\ \hline V_{GS} = -10 \ V, & T_J = -5 \ A, & T_J = 25°C & 27 & 27 \\ \hline V_{GS} = -10 \ V, & T_J = -5 \ A, & T_J = 25°C & 27 & 27 \\ \hline V_{GS} = -10 \ V, & T_J = -5 \ A, & T_J = 25°C & 27 & 27 \\ \hline V_{GS} = -10 \ V, & T_J = -5 \ A, & T_J = 25°C & 27 & 27 \\ \hline V_{GS} = -10 \ V, & T_J = -5 \ A, & T_J = 25°C & 27 & 27 \\ \hline V_{GS} = -10 \ V, & T_J = -5 \ A, & T_J = 25°C & 27 & 27 \\ \hline V_{GS} = -10 \ V, & T_J = -5 \ A, & T_J = 25°C & 27 & 27 \\ \hline V_{GS} = -10 \ V, & T_J = -5 \ A, & T_J = 25°C & 27 & 27 \\ \hline V_{GS} = -10 \ V, & T_J = -5 \ A, & T_J = 25°C & 27 & 27 \\ \hline V_{GS} = -10 \ V, & T_J = -5 \ A, & T_J = -5 \ A$	$ \begin{array}{ c c c c c c c c } \hline V_{GS(th)} & Gate Threshold Voltage & V_{DS} = V_{GS}, & I_D = 250 \ \mu A & Q1 & 1 & 1.9 & 3 & V_{DS} = V_{GS}, & I_D = -250 \ \mu A & Q2 & -1 & 1.7 & -3 & V_{DS} = V_{CS(th)} \\ \hline \Delta V_{DS} = V_{GS}, & I_D = -250 \ \mu A & Q2 & -1 & 1.7 & -3 & V_{DS} = V_{CS(th)} \\ \hline \Delta V_{DS} = V$	On Char	acteristics (Note 2)	-N						ı
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			$V_{DS} = V_{GS}$	I _D = 250 μA		1	1.0	3	V
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		0 . 7		$I_D = -250 \mu A$	_	<u>-1</u>		-3	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$							-4.5		V/°C
$ \begin{array}{ c c c c c c c c c } \hline On-Resistance & V_{GS} = 10 \ V, & I_D = 7 \ A, \ T_J = 125^{\circ}C \\ \hline V_{GS} = 4.5 \ V, & I_D = 6 \ A \\ \hline V_{GS} = -10 \ V, & I_D = -5 \ A \\ \hline V_{GS} = -10 \ V, & I_D = -5 \ A, \ T = 125^{\circ}C \\ \hline V_{GS} = -10 \ V, & I_D = -5 \ A, \ T = 125^{\circ}C \\ \hline V_{GS} = -10 \ V, & I_D = -5 \ A, \ T = 125^{\circ}C \\ \hline V_{GS} = -10 \ V, & I_D = -5 \ A, \ T = 125^{\circ}C \\ \hline V_{GS} = -10 \ V, & I_D = -4 \ A \\ \hline V_{GS} = -10 \ V, & I_D = -4 \ A \\ \hline V_{GS} = -10 \ V, & I_D = -4 \ A \\ \hline V_{GS} = -10 \ V, & I_D = -4 \ A \\ \hline V_{GS} = -10 \ V, & I_D = -7 \ A, \ T = 125^{\circ}C \\ \hline V_{GS} = -10 \ V, & I_D = -7 \ A, \ I_D =$	$ \begin{array}{ c c c c c c c c c } \hline & On-Resistance & V_{GS} = 10 \ V, & I_D = 7 \ A, \ T_J = 125^{\circ}C \\ \hline & V_{GS} = 4.5 \ V, & I_D = 6 \ A \\ \hline & V_{GS} = -10 \ V, & I_D = -5 \ A, \ T_J = 125^{\circ}C \\ \hline & V_{GS} = -10 \ V, & I_D = -5 \ A, \ T_J = 125^{\circ}C \\ \hline & V_{GS} = -10 \ V, & I_D = -5 \ A, \ T_J = 125^{\circ}C \\ \hline & V_{GS} = -10 \ V, & I_D = -5 \ A, \ T_J = 125^{\circ}C \\ \hline & V_{GS} = -10 \ V, & I_D = -5 \ A, \ T_J = 125^{\circ}C \\ \hline & V_{GS} = -10 \ V, & I_D = -5 \ A, \ T_J = 125^{\circ}C \\ \hline & V_{GS} = -10 \ V, & I_D = -5 \ A, \ T_J = 125^{\circ}C \\ \hline & V_{GS} = -10 \ V, & I_D = -5 \ A, \ T_J = 125^{\circ}C \\ \hline & V_{GS} = -10 \ V, & I_D = -5 \ A, \ T_J = 125^{\circ}C \\ \hline & V_{GS} = -10 \ V, & V_{DS} = -10 \$							19	20	mΩ
$\begin{array}{ c c c c c c c c c }\hline & V_{GS} = -10 \text{ V}, & I_D = -5 \text{ A} \\ & V_{GS} = -10 \text{ V}, & I_D = -5 \text{ A}, & T = -25 \text{ C} \\ & V_{GS} = -10 \text{ V}, & I_D = -5 \text{ A}, & T = -25 \text{ C} \\ & V_{GS} = -4.5 \text{ V}, & I_D = -4 \text{ A} \\ & V_{GS} = -4.5 \text{ V}, & I_D = -4 \text{ A} \\ & V_{GS} = -10 \text{ V}, & V_{DS} = -20 \text{ C} \\ & V_{DS} = -10 \text{ V}, & V_{DS} = -20 \text{ C} \\ & V_{DS} =$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	- 1 - /	On-Resistance		= 7 A, T _J = 125°C				42	N
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					1 -	7	10		1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				$I_D = -5 A$ 5 Δ T 125°C	5				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				I _D = 4 A					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	I _{D(on)}	On-State Drain Current		70s 5V					Α
Dynamic Characteristics Ciss Input Capacitance Q. Compared to the compared to	Dynamic Characteristics Ciss Input Capacitance Q Cips 15 V v.s = 0 V 1 × 1 CMHz 1 O2 528 p	g FS	Forward Transconductance	$V_{DS} = 5 V$	'p = 7 A	Q1		23		I.
C _{iss} Input Capacitance Q	C _{iss} Input Capacitance Q C1 575 p		01	V _{DS} = -\ (,	=-5 A	Q2!	-	10	10	
/ps '5 V v s = 0 V 1 = 10 MHz O2	(ps 15 V v s = 0 V 1 = 10 MHz			[O		T AV		7E-7E	1//	nE
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Coss Output Capacitance Q1 145 p Crss Reverse Transier Capacitance Discrete Capacitance			15 V. v.s	= 0 V, 1 - 1.0 MHz		. (Ì	pF
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Coss	Output Capacitance		Willy 16	Q1 .	1			pF
$R_{\rm G}$ Gate Pesis nee $V_{\rm CS} \sim 15 {\rm mV}, {\rm f} = 1.0 {\rm MHz}$ $\begin{array}{ c c c c c c c c c c c c c c c c c c c$	R _G Gate Pesis noe V _{CS} -15 mV, f - 1.0 MHz Q1 Q1 6.0	C _{rss}	Reverse Tr Jie. Capa ance	$j_{S} = -15 \text{V}, \text{V}_{C}$	$_{S} = 0 \text{ V } f = 1.0 \text{ MHz}$	QT	-	65		pF
	CEISEASENTATIVE Q2 6.0 3	R _o	Gate Resis noe	V - c - 15 mV	f = 10 MHz					Ω
MOI COLINE	O LO LE SENTATIVE		d. cons	3, 1,,		Q2				22
G CK (A)	I CE EASEN'I		SeNot	CO	NE	Q2				
OEVIC PLES		V.								
DEVICEPRES	D. EP.)	21							
DEVICEPRES	REP									

Symbol	Parameter	Test Conditions	Туре	Min	Тур	Max	Units
Switchir	ng Characteristics	Note 2)					
t _{d(on)}	Turn-On Delay Time	Q1 $V_{DD} = 15 \text{ V}, I_{D} = 1 \text{ A},$	Q1 Q2		8 7	16 14	ns
t _r	Turn-On Rise Time	$V_{GS} = 10V, R_{GEN} = 6 \Omega$	Q1 Q2		5 13	10 24	ns
t _{d(off)}	Turn-Off Delay Time	Q2 $V_{DD} = -15 \text{ V}, I_D = -1 \text{ A},$	Q1 Q2		23 14	37 25	ns
t _f	Turn-Off Fall Time	V_{GS} = -10V, R_{GEN} = 6 Ω	Q1 Q2		3 9	6 17	ns
Q_g	Total Gate Charge	Q1 $V_{DS} = 15 \text{ V}, I_D = 7 \text{ A}, V_{GS} = 10 \text{ V}$	Q1 Q2		11.4 9.6	16	nC
Q_{gs}	Gate-Source Charge	Q2	Q1 Q2		1.7		пC
Q_{gd}	Gate-Drain Charge	$V_{DS} = -15 \text{ V}, I_{D} = -5 \text{ A}, V_{GS} = -10 \text{ V}$	Q1 Q2		2.1		ήC

Is	Maximum Continuous Drain-S	Source Diode Forward Current 1 1.3	4
I _{SM}	Maximum Plused Drain-Source	ce Diode Forward Current (Note 2) Q 2 20 A	4
V_{SD}	Drain-Source Diode Forward Voltage	$V_{GS} = 0 \text{ V}, I_S = 1.3 $	$\overline{\mathcal{I}}$
t _{rr}	Diode Reverse Recovery Time	Q_1 $I_F = 7 A^{-1} I_F/d_1 = 1 A/\mu s$ Q_2 Q_3 Q_4 Q_5 Q_5	S
Q _{rr}	Diode Reverse Recovery Charge	Q2 I _i	С

Notes:

1. R_{aJA} is the sum of the junction-to-case and the drain pins. R_{aJC} is guaranteed by design. Leto-amb the drain pins. R_{aJC} is guaranteed by design.

b) 12: °/W when mou...ted on a .02 in² pad of 2 oz c op Jer

c) 135 °/W when mounted on a minimum pad.

- hale 1: n letter size paner
- 2. Le Test: Pulse Wid h < 300µs, Duty Circle < 2.0%
- 3. Starting TJ $\sim 25\,^{\circ}\text{C},\,L=3\text{mH},\,i,\,\varsigma=6\text{A},\,V_{\text{DP}}-3\,^{\circ}\text{V},\,V_{\text{GS}}=10\text{V}$ (Q1).

Star ng $\Gamma J = 25$ °C, L = 3mH, I_{AS} = Σ 4, V_{DD} = 30V, V_{GS} = 10V (Q2).

Typical Characteristics: Q1 (N-Channel)

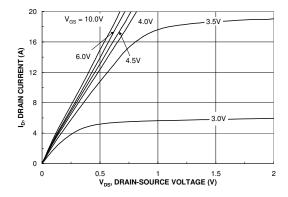


Figure 1. On-Region Characteristics.

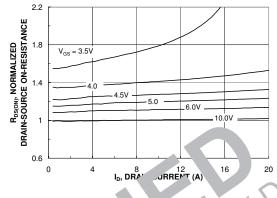
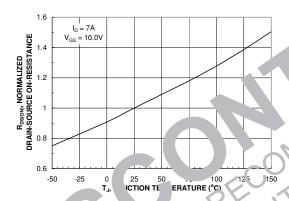



Figure 2. On-Re. tan Vari on with Drain rrent d G oltage.

Figu 3 Pesicance Variation with mperature.

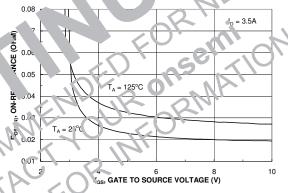


Figure 4. On-Resistance Variation with Gate-to-Source Voltage.

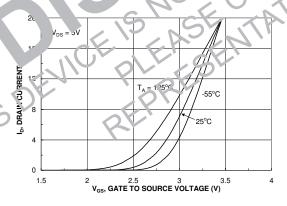


Figure 5. Transfer Characteristics.

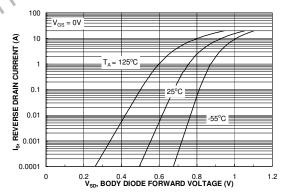
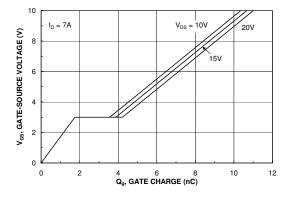



Figure 6. Body Diode Forward Voltage Variation with Source Current and Temperature.

Typical Characteristics: Q1 (N-Channel)

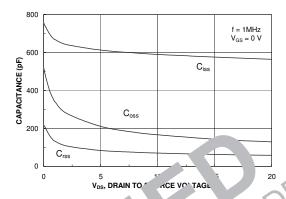
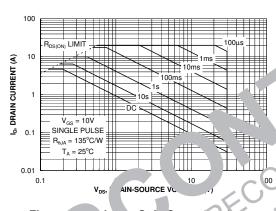



Figure 7. Gate Charge Characteristics.

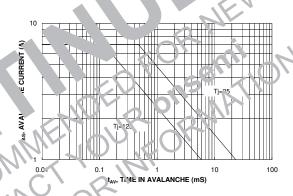


Figure . Iv. axim. 1 Saf Operating Area.

Figure 13. Unclamped Inductive Switching Capability Figure

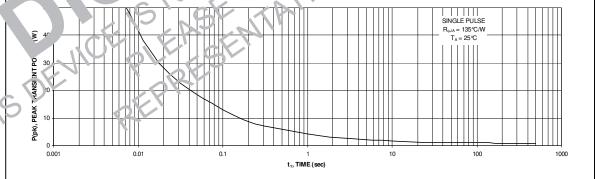


Figure 11. Single Pulse Maximum Power Dissipation.

Typical Characteristics: Q2 (P-Channel)

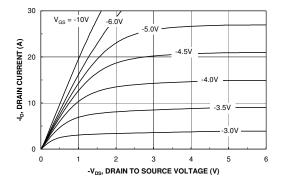


Figure 12. On-Region Characteristics.

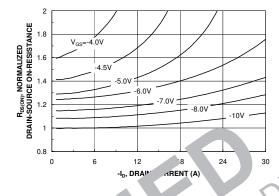
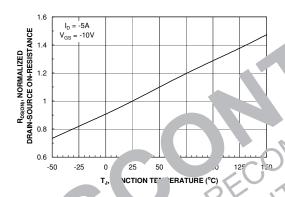



Figure 13. On-Re stal Vari ion with Drain rrent d G oltage.

Figur 14 Researce Variation with mperature.

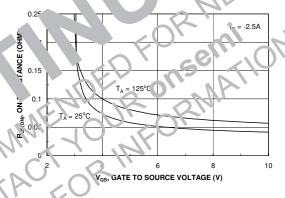


Figure 15. On-Resistance Variation with Gate-to-Source Voltage.

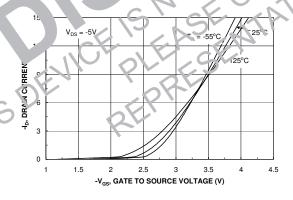


Figure 16. Transfer Characteristics.

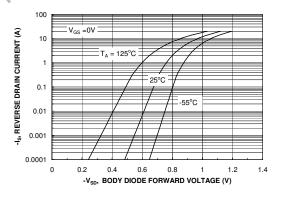
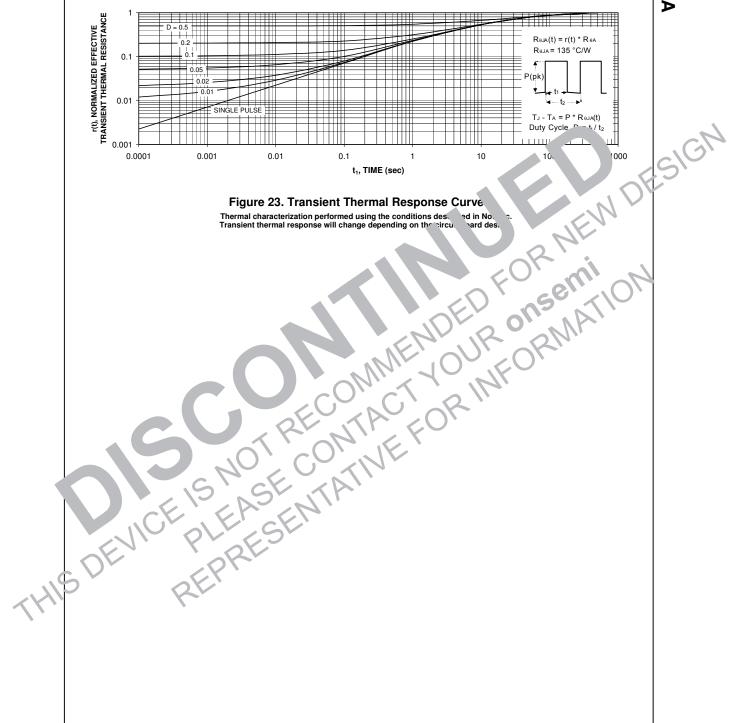



Figure 17. Body Diode Forward Voltage Variation with Source Current and Temperature.

Typical Characteristics: Q2 (P-Channel)

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidianries, and is not intended to be an exhaustive list of all such trademarks.

ACEx [®]	FPS™	PDP-SPM™	The Power Franchise
Build it Now™	F-PFS™	Power-SPM™	puwer buyer
CorePLUS™	FRFET®	PowerTrench [®]	franchise
CorePOWER™	Global Power Resource SM	Programmable Active Droop™	TinyBoost™
$CROSSVOLT^{TM}$	Green FPS™	QFET [®]	TinyBuck™
CTL™	Green FPS™ e-Series™	QS™	TinyLogic [®]
Current Transfer Logic™	GTO™	Quiet Series™	TIM Jr. TM
EcoSPARK [®]	IntelliMAX™	RapidConfigure™	i 'Power
EfficentMax™	ISOPLANAR™	Saving our world 1mW at a tim	Tin, WM™
EZSWITCH™ *	MegaBuck™	SmartMax™	Tiny\ ∘″
E Z. **	MICROCOUPLER™	SMART START™	µSerDc₃™
	MicroFET™	SPM [®]	
	MicroPak™	STEALTH™	Ser Pas [™]
Fairchild [®]	MillerDrive™	SuperFET	UHC®
Fairchild Semiconductor®	MotionMax™	SuperSOT ^{TI}	Ultia ⊢RFET™
FACT Quiet Series™	Motion-SPM™	Supe -M-E	UniFET™
FACT [®]	OPTOLOGIC [®]	t nert T™-c	VCX™
FAST [®]	OPTOPLANAR [®]	Su rMc ™	Vic:\s\Max™
FastvCore™	(1)®	TEM ®	G0 /10
FlashWriter [®] *		EGE TEM ®	

* EZSWITCH™ and FlashWriter® are trademarks or ____om c__neral Cc_poration, used under it ense by Fairchick Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESER'S THE 3H1 TO MAKE CHANGES WITHOUT FUR THER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABIL UN "ION, C" DESIGN FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF AT PRODUCT ACCUIT DESCRIBED HEPEIN; NE'THER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR TO RIGHT OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERM AND CO. "TION", SPECIFICALLY THE WARRANTY THE WARRANTY THE COVERS THESE PRODUCTS.

LIFE SUPPORT DLICY

FAIP ...LD. PR. UC. 3 ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYS MS WI OU THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As usea rr

- 1. Life support de rices or systems are devices or systems which,
 (a) are intended for surgical implant into the body or (b) support at sustain life, and (c) whose tailure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	This datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

Rev. I34

ON Semiconductor and III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns me rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdt/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.

Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada

Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative