onsemi

MOSFET – P-Channel, Shielded Gate, POWERTRENCH[®]

V _{DS}	R _{DS(on)} MAX	I _D MAX
–150 V	255 m Ω @ –10 V	–2.2 A
	290 mΩ @ –6 V	

-150 V, -2.2 A, 255 m Ω

FDS86267P

General Description

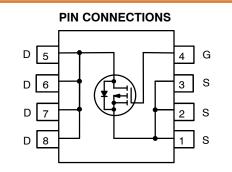
This P-Channel MOSFET is produced using **onsemi**'s advanced POWERTRENCH process that incorporates shielded gate technology. The process has been optimized for the on-state resistance and yet maintain superior switching performance.

Features

- Shielded Gate MOSFET Technology
- Max $R_{DS(ON)} = 255 \text{ m}\Omega$ @ $V_{GS} = -10 \text{ V}$, $I_D = -2.2 \text{ A}$
- Max $R_{DS(ON)} = 290 \text{ m}\Omega @ V_{GS} = -6 \text{ V}, I_D = -2 \text{ A}$
- Very Low R_{DS(on)} Mid Voltage P-channel Silicon Technology Optimised for Low Qg
- This Product is Optimised for Fast Switching Applications as well as Load Switch Applications
- 100% UIL Tested
- This Device is Pb-Free, Halide Free and is RoHS Compliant

Applications

- Active Clamp Switch
- Load Switch



SOIC8 CASE 751EB

MARKING DIAGRAM

&Z	= Assembly Plant Code
&2	= 2-Digit Date Code (Year & Week)
&K	= 2-Digit Lot Run Traceability Code
FDS86267P	= Specific Device Code

ORDERING INFORMATION

Device	Package	Shipping [†]
FDS86267P	SOIC8	2500 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, <u>BRD8011/D</u>.

ABSOLUTE MAXIMUM RATINGS (T_A = 25°C unless otherwise noted)

Symbol	Par	ameter	Ratings	Unit
V _{DS}	Drain to Source Voltage		-150	V
V_{GS}	Gate to Source Voltage		±25	V
I _D	Drain Current	Continuous (Note 1a)	-2.2	А
		Pulsed (Note 4)	-34	1
E _{AS}	Single Pulse Avalanche Energy (Note 3)	·	54	mJ
PD	Power Dissipation	$T_A = 25^{\circ}C$ (Note 1a)	2.5	W
		$T_A = 25^{\circ}C$ (Note 1b)	1.0	1
T _J , T _{STG}	Operating and Storage Junction Temperatu	ure Range	-55 to +150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS

Symbol	Parameter	Ratings	Unit
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient (Note 1a)	50	°C/W
	Thermal Resistance, Junction to Ambient (Note 1b)	125	

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

Symbol	Parameter	Test Condition	Min	Тур	Max	Unit
OFF CHAR	ACTERISTICS					
BV _{DSS}	Drain to Source Breakdown Voltage	I_D = -250 μ A, V _{GS} = 0 V	-150	-	-	V
$\frac{\Delta \text{BV}_{\text{DSS}}}{\Delta \text{T}_{\text{J}}}$	Breakdown Voltage Temperature Coefficient	$I_D = -250 \ \mu$ A, Referenced to 25° C	_	-121	-	mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = -120 \text{ V}, \text{ V}_{GS} = 0 \text{ V}$	-	-	-1	μΑ
I _{GSS}	Gate to Source Leakage Current	V_{GS} = ±25 V, V_{DS} = 0 V	-	-	±100	nA

ON CHARACTERISTICS

V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS}=V_{DS},I_{D}=-250\;\mu\text{A}$	-2	-3	-4	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate to Source Threshold Voltage Temperature Coefficient	$I_D = -250 \ \mu\text{A}$, Referenced to 25°C	-	5	-	mV/°C
R _{DS(on)}	Static Drain to Source On Resistance	$V_{GS} = -10 \text{ V}, \text{ I}_{D} = -2.2 \text{ A}$	_	191	255	mΩ
		$V_{GS} = -6 \text{ V}, \text{ I}_{D} = -2 \text{ A}$	-	214	290	
		V_{GS} = -10 V, I _D = -2.2 A, T _J = 125°C	_	342	448	
9fs	Forward Transconductance	$V_{DS} = -10 \text{ V}, \text{ I}_{D} = -2.2 \text{ A}$	_	6.8	-	S

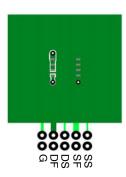
DYNAMIC CHARACTERISTICS

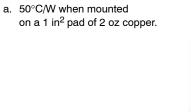
C _{iss}	Input Capacitance	V_{DS} = -75 V, V_{GS} = 0 V, f = 1 MHz	-	806	1130	pF
C _{oss}	Output Capacitance		-	54	75	pF
C _{rss}	Reverse Transfer Capacitance		-	1.6	2.3	pF
Rg	Gate Resistance		0.1	3	6	Ω

SWITCHING CHARACTERISTICS

t _{d(on)}	Turn–On Delay Time	$V_{DD} = -75 \text{ V}, \text{ I}_{D} = -2.2 \text{ A}, \text{ V}_{GS} = -10 \text{ V},$	-	9.7	20	ns
t _r	Rise Time	$R_{GEN} = 6 \Omega$	-	2.5	10	ns
t _{d(off)}	Turn–Off Delay Time		-	17	30	ns
t _f	Fall Time		-	5.7	12	ns

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise noted) (continued)

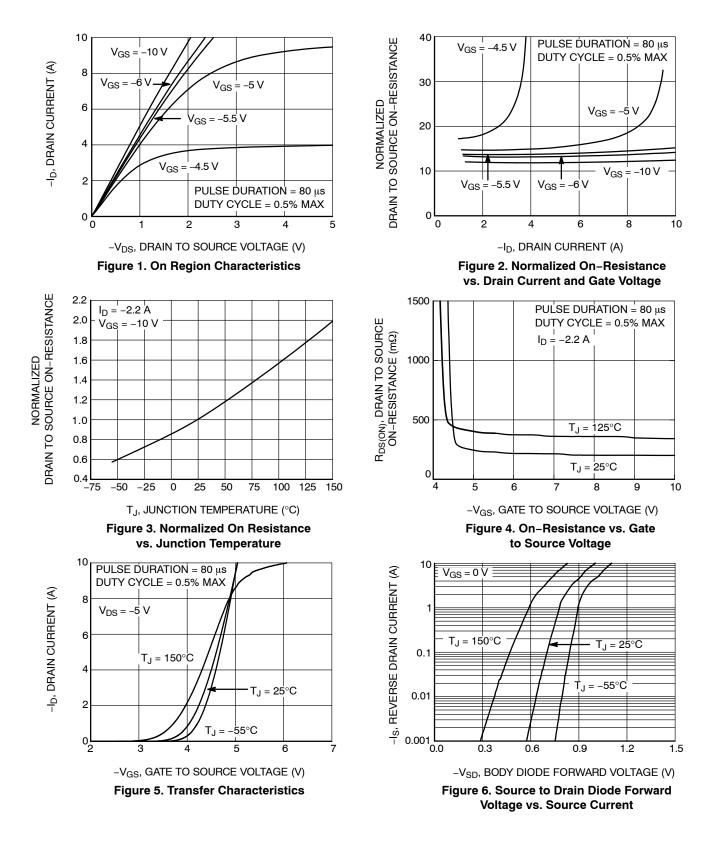

Parameter	Test Condition	Min	Тур	Max	Unit
G CHARACTERISTICS					
Total Gate Charge	$V_{GS} = 0 V \text{ to } -10 V$, $V_{DD} = -75 V$, $I_D = -2.2 A$	-	11	16	nC
	V_{GS} = 0 V to –6 V, V_{DD} = –75 V, I_{D} = –2.2 A	-	7	10	nC
Gate to Source Charge	V _{DD} = -75 V, I _D = -2.2 A	-	3.2	-	nC
Gate to Drain "Miller" Charge		-	1.9	-	nC
	G CHARACTERISTICS Total Gate Charge Gate to Source Charge	G CHARACTERISTICSTotal Gate Charge $V_{GS} = 0 V$ to $-10 V$, $V_{DD} = -75 V$, $I_D = -2.2 A$ $V_{GS} = 0 V$ to $-6 V$, $V_{DD} = -75 V$, $I_D = -2.2 A$ Gate to Source Charge $V_{DD} = -75 V$, $I_D = -2.2 A$	G CHARACTERISTICS Total Gate Charge $V_{GS} = 0 V \text{ to } -10 V, V_{DD} = -75 V,$ - $V_{GS} = 0 V \text{ to } -6 V, V_{DD} = -75 V,$ - $V_{GS} = 0 V \text{ to } -6 V, V_{DD} = -75 V,$ - $Q_{GS} = 0 V \text{ to } -6 V, V_{DD} = -75 V,$ - $V_{DD} = -75 V, I_D = -2.2 A$ -	G CHARACTERISTICS V _{GS} = 0 V to -10 V, V _{DD} = -75 V, I _D = -2.2 A - 11 V _{GS} = 0 V to -6 V, V _{DD} = -75 V, I _D = -2.2 A - 7 Gate to Source Charge V _{DD} = -75 V, I _D = -2.2 A - 3.2	G CHARACTERISTICS V _{GS} = 0 V to -10 V, V _{DD} = -75 V, I _D = -2.2 A - 11 16 V _{GS} = 0 V to -6 V, V _{DD} = -75 V, I _D = -2.2 A - 7 10 Gate to Source Charge V _{DD} = -75 V, I _D = -2.2 A - 3.2 -

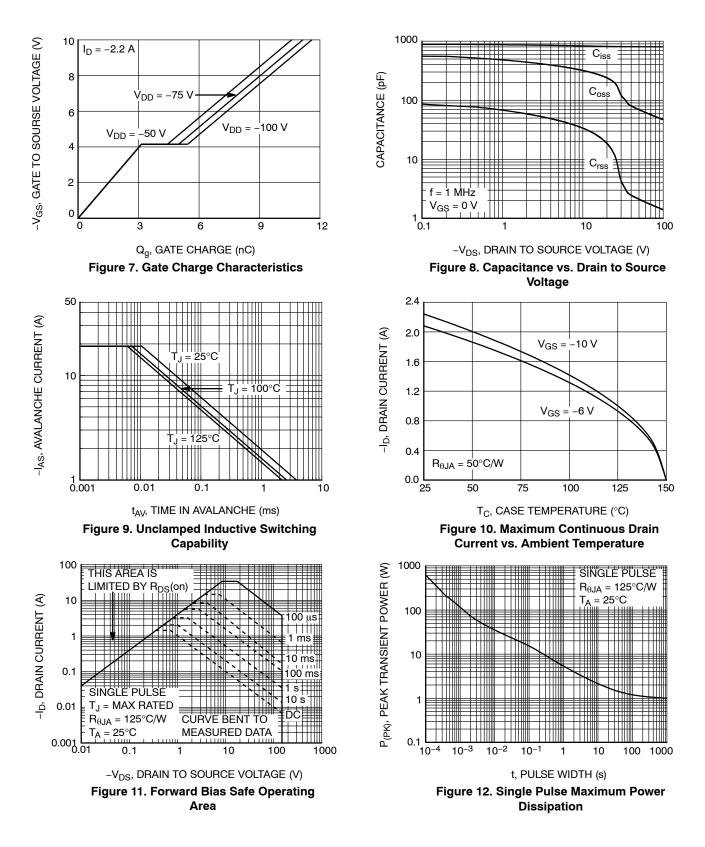

DRAIN-SOURCE DIODE CHARACTERISTICS

V _{SD}	Source-Drain Diode Forward Voltage	$V_{GS} = 0 \text{ V}, \text{ I}_{S} = -2.2 \text{ A} \text{ (Note 2)}$	-	-0.8	-1.3	V
		$V_{GS} = 0 \text{ V}, \text{ I}_{S} = -2 \text{ A} \text{ (Note 2)}$	-	-0.8	-1.2	
t _{rr}	Reverse Recovery Time	$I_F = -2.2 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s}$	-	65	104	ns
Q _{rr}	Reverse Recovery Charge		-	157	251	nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

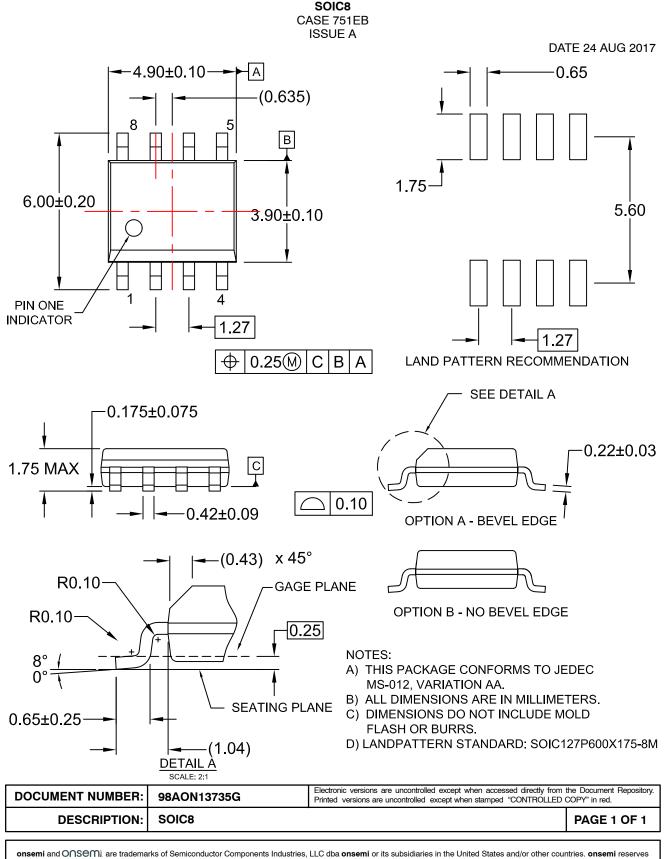
1. $R_{\theta JA}$ is determined with the device mounted on a 1 in² pad 2 oz copper pad on a 1.5 × 1.5 in. board of FR-4 material. $R_{\theta JC}$ is guaranteed by design while $R_{\theta CA}$ is determined by the user's board design.




b. 125°C/W when mounted on a minimum pad.

- 2. Pulse Test: Pulse Width < 300 μ s, Duty cycle < 2.0 %. 3. Starting T_J = 25°C, L = 3 mH, I_{AS} = -6 A, V_{DD} = -150 V, V_{GS} = -10 V. 100% tested at L = 0.3 mH, I_{AS} = -13 A. 4. Pulsed Id please refer to Figure 11 SOA graph for more details.

TYPICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)


TYPICAL CHARACTERISTICS (T_J = 25° C unless otherwise noted) (continued)

POWERTRENCH is a registered trademark of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries.

MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS

onsemi and OI ISCIT II are trademarks or Semiconductor Components industries, LLC doa onsemi or its subsidiaries in the United States and/or other countries. Onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>