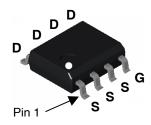
onsemi

MOSFET – N-Channel, UltraFET TRENCH

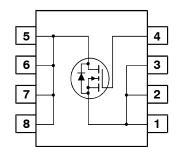
150 V, 0.047 m Ω 4.9 A

FDS2572

Description


UltraFET Devices Combine Characteristics that enable benchmark efficiency in power conversion applications. Optimized for $R_{DS(on)}$, low ESR, low total and Miller gate charge, these devices are ideal for high frequency DC–DC converters.

Features


- $R_{DS(on)} = 0.040 \text{ m}\Omega$ (Typ.), $V_{GS} = 10 \text{ V}$
- $Q_{g(TOT)} = 29 \text{ nC} (Typ.), V_{GS} = 10 \text{ V}$
- Low Q_{RR} Body Diode
- Maximized Efficiency at High Frequencies
- UIS Rated
- These Device is Pb-Free and Halide Free

Typical Applications

- DC-DC Converters
- Telecom and Data-Com Distributed Power Architectures
- 48-volt I/P Half-Bridge/Full-Bridge
- 24-volt Forward and Push-Pull topologies

SOIC8 CASE 751EB

MARKING DIAGRAM

&Z = Assembly Plant Code

&3 = Date Code (Year & Week)&K = Lot Traceability Code

FDS2572 = Specific Device Code

ORDERING INFORMATION

Device	Package	Shipping [†]
FDS2572	SOIC8	2,500 /
	(Pb-Free,Halide Free)	Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, <u>BRD8011/D</u>.

ABSOLUTE MAXIMUM RATINGS (T_A = 25° C unless otherwise noted)

Symbol	Parameter	Value	Unit
V _{DSS}	Drain to Source Voltage	150	V
V _{GS}	Gate to Source Voltage	±20	V
ID	$ \begin{array}{l} \text{Drain Current} \\ - \text{ Continuous } (T_C = 25^\circ\text{C}, \text{V}_{GS} = 10 \text{V}, \text{R}_{\theta JA} = 50^\circ\text{C}/\text{W}) \\ - \text{ Continuous } (T_C = 100^\circ\text{C}, \text{V}_{GS} = 10 \text{V}, \text{R}_{\theta JA} = 50^\circ\text{C}/\text{W}) \\ - \text{Pulsed} \end{array} $	4.9 3.1 Figure 4	A
PD	Power Dissipation $T_C = 25^{\circ}C$	2.5	W
	Derate Above 25°C	20	mW/°C
T _J , T _{stg}	Operating and Storage Junction Temperature Range	–55 to +150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS

Symbol	Parameter		Unit
$R_{\theta JC}$	Thermal Resistance, Junction to Case (Note 1)	25	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Case at 10 Seconds (Note 2)	50	
$R_{\theta JA}$	Thermal Resistance, Junction to Case at Steady State (Note 2)	85	°C/W

$\label{eq:constraint} \textbf{ELECTRICAL CHARACTERISTICS} \quad (T_J = 25^\circ C \text{ unless otherwise noted})$

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
OFF CHAI	RACTERISTICS					
BV _{DSS}	Drain to Source Breakdown Voltage	$I_D = 250 \ \mu A, \ V_{GS} = 0 \ V$	150	-	-	V
I _{DSS}	Zero Gate Voltage Drain Current	V_{DS} = 120 V, T_{C} = 150°C	-	-	1	μΑ
		$V_{DS} = 0 \text{ V}, \text{ T}_{C} = 150^{\circ}\text{C}$	-	-	250	
I _{GSS}	Gate to Source Leakage Current	V _{GS} = ±20 V	-	-	±100	nA
ON CHAR	ACTERISTICS					
V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_D = 250 \ \mu A$	2	-	4	V
R _{DS(on)}	Drain-Source On-Resistance	I _D = 4.9 A, V _{GS} = 10 V	-	0.040	0.047	Ω
R _{DS(on}	Drain-Source On-Resistance	$I_D = 4.9 \text{ A}, V_{GS} = 6 \text{ V}$	-	0.044	0.053	Ω
DYNAMIC	CHARACTERISTICS					
C _{iss}	Input Capacitance	V_{DS} = 25 V, V_{GS} = 0 V, f = 1 MHz	-	2050	2870	pF
C _{oss}	Output Capacitance		-	220	310	pF
C _{rss}	Reverse Transfer Capacitance		-	48	80	pF
Rg	Gate Resistance		0.1	1.3	3.0	Ω
Q _{g(TOT)}	Total Gate Charge at 10 V	V_{GS} = 0 V to 10 V, V _{DD} = 75 v, I _D = 4.9 A I _g = 1.0 mA	-	29	38	nC
Q _{g(TH)}	Threshold Gate Charge	$V_{GS} = 0 V \text{ to } 2 V,$ $V_{DD} = 75 v, I_D = 4.9 A I_g = 1.0 mA$	-	4	6	nC
Q _{gs}	Gate to Source Gate Charge		-	8	-	nC
Q _{gd}	Gate to Drain "Miller" Charge	V_{DD} = 75 v, I_D = 4.9 A I_g = 1.0 mA	-	6	-	nC
Q _{gs2}	Gate Charge Threshold to Plateau		-	4	-	nC
SWITCHIN	IG CHARACTERISTICS				-	
t _{ON}	Turn–On Time	$V_{DD} = 75 \text{ V}, \text{ I}_{D} = 4.9 \text{ A}, \\ V_{GS} = 10 \text{ V}, \text{ R}_{G} = 10 \Omega$	-	-	27	ns
t _{d(ON)}	Turn-On Delay Time		-	14	-	ns
tr	Rise Time		_	4	-	ns
t _{d(OFF)}	Turn-Off Delay Time		-	44	-	ns

ELECTRICAL CHARACTERISTICS (continued) ($T_J = 25^{\circ}C$ unless otherwise noted)

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit	
SWITCHIN	G CHARACTERISTICS						
t _f	Fall Time		-	22	-	ns	
t _{OFF}	Turn-Off Time]	_	-	100	ns	
DRAIN-SC	DRAIN-SOURCE DIODE CHARACTERISTICS						
V_{SD}	Source to Drain Diode Forward Voltage	I _{SD} = 4.9 A	-	-	1.25		
		I _{SD} = 3.1 A	-	-	1.0	V	
t _{rr}	Reverse Recovery Time	I_{SD} = 4.9 A, dI _{SD} /dt = 100 A/µs	-	-	72	ns	
Q _{rr}	Reverse Recoverd Charge	I_{SD} = 4.9, dI _{SD} /dt = 100 A/µs	_	-	158	nC	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

NOTES:

R_{0JA} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal referance is defined as the solder mounting surface of the drain pins. R_{0JC} is guaranteed by design while R_{0CA} is determined by the user's board design.
 R_{0JA} is measured with 1.0 in² copper on FR-4 board

TYPICAL CHARACTERISTICS

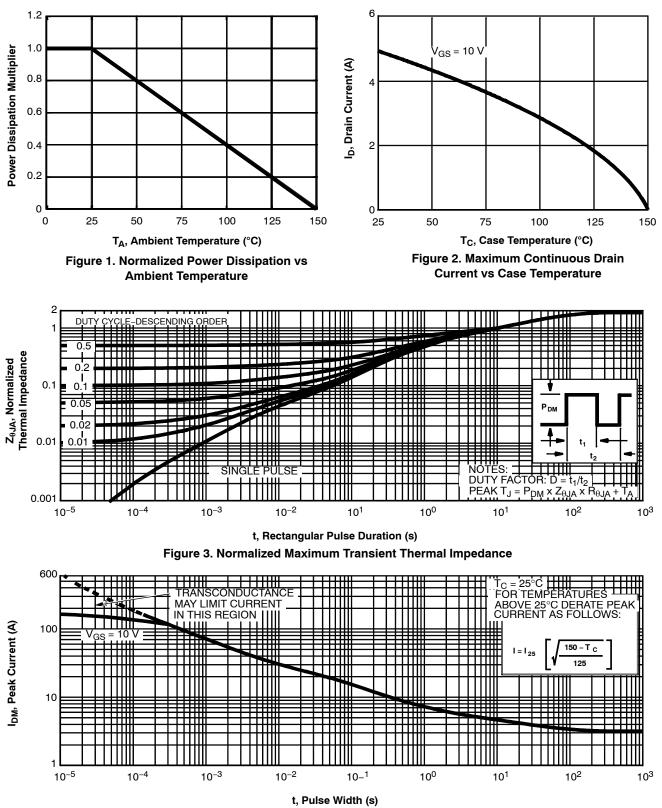
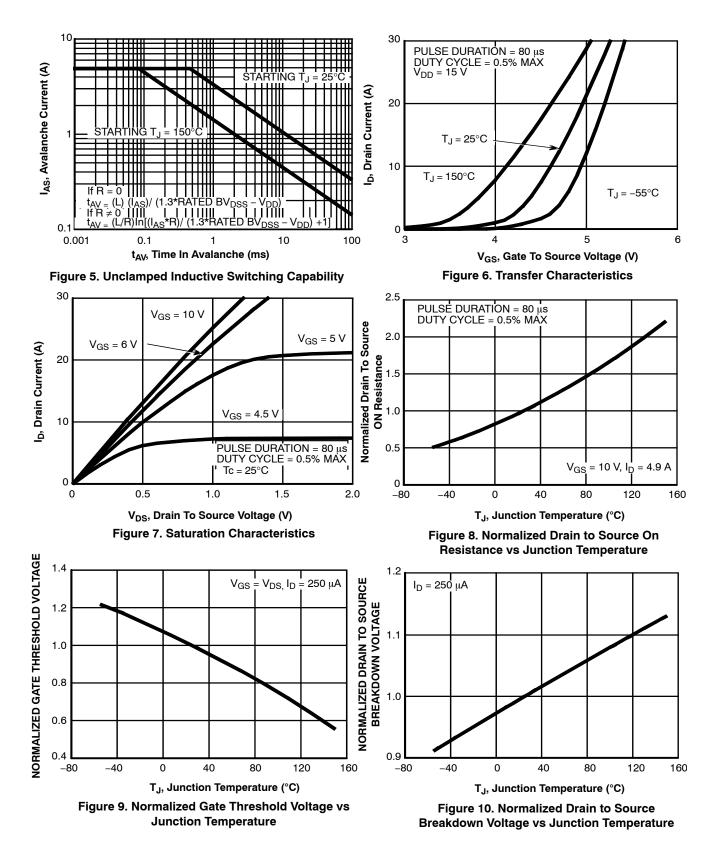



Figure 4. Peak Current Capability

TYPICAL CHARACTERISTICS (CONTINUED)

TYPICAL CHARACTERISTICS (CONTINUED)

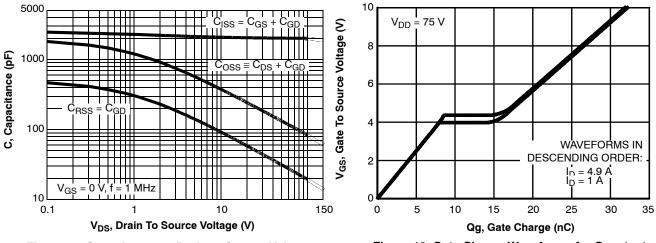


Figure 12. Gate Charge Waveforms for Constant Gate Currents

TEST CIRCUITS AND WAVEFORMS

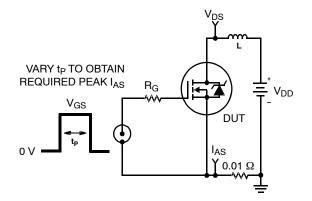


Figure 13. Unclamped Energy Test Circuit

Figure 15. Gate Charge Test Circuit

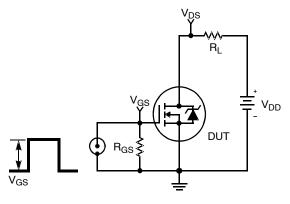


Figure 17. Switching Time Test Circuit

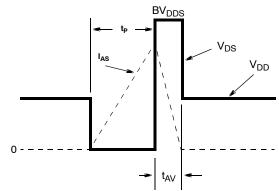


Figure 14. Unclamped Energy Waveforms

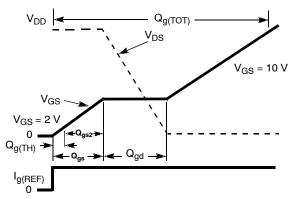


Figure 16. Gate Charge Waveforms

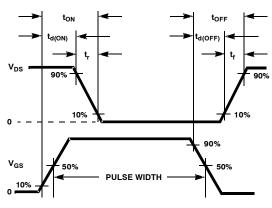


Figure 18. Switching Time Waveforms

THERMAL RESISTANCE VS. MOUNTING PAD AREA

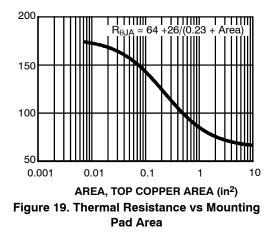
The maximum rated junction temperature, T_{JM} , and the Thermal Resistance of the heat Dissipating Path Determines the Maximum Allowable Device Power Dissipation, PDM, in an application. Therefore the application's ambient

temperature, T_A (°C), and thermal resistance R_{0JA} (°C/W) must be reviewed to ensure that T_{JM} is never exceeded. Equation 1 mathematically represents the relationship and serves as the basis for Establishing the rating of the Part.

$$P_{DM} = \frac{\left(T_{JM} - T_{A}\right)}{R_{\oplus JA}}$$
 (eq.1)

In using surface mount devices such as the SO8 package, the environment in which it is applied will have a significant influence on the part's current and maximum power dissipation ratings. Precise determination of PDM is complex and influenced by many factors:

- 1.Mounting pad area onto which the device is attached and whether there is copper on one side or both sides of the board:
- 2. The number of copper layers and the thickness of the board.
- 3. The use of external heat sinks
- 4. The use of external heat sinks
- 5. Air flow and board orientation
- 6..For non steady state applications, the pulse width, the duty cycle and the transient thermal response of the part, the board and the environment they are in.


onsemi Provides Thermal Information to assist the Designer's Preliminary Application Evaluation. Figure 19 defines the $R_{\theta JA}$ for the device as a function of the top copper (component side) area. This is for a horizontally positioned FR-4 board with 10z copper after 1000 seconds of steady state power with no air flow. This graph provides the necessary information for calculation of the steady state junction temperature or Power Dissipation. Pulse applications can be evaluated using the Fairchild Device Spice Thermal model or manually utilizing the normalized maximum transient thermal impedance curve.

Thermal resistances corresponding to other copper areas can be obtained from Figure 19 or by calculation using Equation 2. The area, in square inches is the top copper area including the gate and source pads.

$$R_{\Theta JA} = 64 + \frac{26}{0.23 + \text{Area}}$$
 (eq.2)

The transient thermal impedance $(Z_{\theta JA})$ is also effected by varied top copper board area. Figure 20 shows the effect of copper pad area on single pulse transient thermal impedance. Each trace represents a copper pad area in square inches corresponding to the descending list in the graph. Spice and SABER thermal models are provided for each of the listed pad areas.

Copper Pad area has no perceivable effect on transient thermal impedance for pulse widths less than 100 ms. For pulse widths less than 100 ms the transient thermal impedance is determined by the die and package. Therefore, CTHERM1 through CTHERM5 and RTHERM1 through RTHERM5 remain constant for each of the thermal models. A listing of the model component values is available in Table 1.

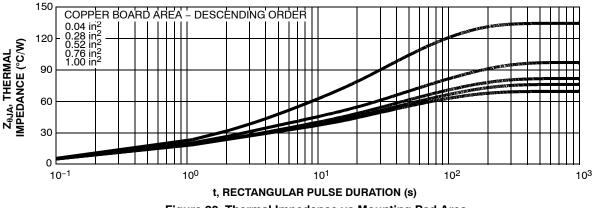


Figure 20. Thermal Impedance vs Mounting Pad Area

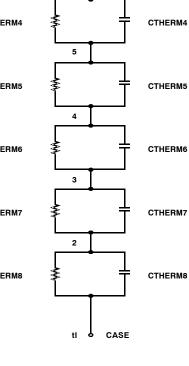
PSPICE ELECTRICAL MODEL

o 2

з

SUBCKT FDS2572 2 1 3 : Rev August 2001 CA 12 8 8e-10 Cb 15 14 8e-10 Cin 6 8 2e-9 LDRAIN DPI CAP DRAIN Dbody 7 5 DbodyMOD 10 Dbreak 5 11 DbreakMOD RLDRAIN RSLC1 DBREAK Dplcap 10 5 DplcapMOD 51 RSLC2 Ebreak 11 7 17 18 157.4 5 ESLC 11 Eds 14 8 5 8 1 50 Eqs 13 8 6 8 1 17 Esg 6 10 6 8 1 <u>6</u> 8 EBREAK ESG Evthres 6 21 19 8 1 EVTHRES 16 21 Evtemp 20 6 18 22 1 (<u>19</u> 8 • MWFAK I GATE EVTEMP RGATE GATE it 8 17 1 \mathbf{m} 18 22 I ← _MMED 9 20 4 Lgate 1 9 5.61e-9 MSTRC RLGATE Ldrain 2 5 1.0e-9 LSOURCE CIN SOURCE 8 m Lsource 3 7 1.98e-9 RSOURCE RLgate 1 9 56.1 RLSOURCE RLdrain 2 5 10 S24 RBRFAK RLsource 3 7 19.8 <u>14</u> 13 15 13 17 18 Mstro 16 6 8 8 MstroMOD RVTEMP Mmed 16 6 8 8 MmedMOD CE 19 Mweak 16 21 8 8 MweakMOD CA IT ŧ 14 VBAT Rbreak 17 18 RbreakMOD 1 5 EGS 6 EDS Rdrain 50 16 RdrainMOD 2.1e-2 8 Rgate 9 20 1.47 RSLC1 5 51 RSLCMOD 1e-6 RVTHRES RSLC2 5 50 1e3 Rsource 8 7 RsourceMOD 1.5e-2 Rvthres 22 8 RvthresMOD 1 Rvtemp 18 19 RvtempMOD 1 S1a 6 12 13 8 S1AMOD S1b 13 12 13 8 S1BMOD S2a 6 15 14 13 S2AMOD S2b 13 15 14 13 S2BMOD Vbat 22 19 DC 1 ESLC 51 50 VALUE = {(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*65),3))} .MODEL DbodyMOD D (IS = 4e-11 N = 1.131 RS = 4.4e-3 TRS1 = 2e-3 TRS2 = 1e-6 + CJO = 1.44e-9 M = 0.67 TT = 7.4e-8 XTI = 4.2) .MODEL DbreakMOD D (RS = 0.38 TRS1 = 2e-3 TRS2 = -8.9e-6) MODEL DplcapMOD D (CJO = 5e-10 IS = 1e-30 N = 10 M = 0.7) .MODEL MstroMOD NMOS (VTO = 4.05 KP = 85 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u) .MODEL MmedMOD NMOS (VTO = 3.35 KP = 5 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 1.47) .MODEL MweakMOD NMOS (VTO = 2.76 KP = 0.05 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 14.7 RS = 0.1) .MODEL RbreakMOD RES (TC1 = 1.1e-3 TC2 = -3e-7) .MODEL RdrainMOD RES (TC1 = 1e-2 TC2 = 3e -5) .MODEL RSLCMOD RES (TC1 = 3e -3 TC2 = 1e -6) .MODEL RsourceMOD RES (TC1 = 4.5e-3 TC2=1e-6) .MODEL RvtempMOD RES (TC1 = -5e-3 TC2 = 2e-6) .MODEL RvthresMOD RES (TC1 = -3e-3 TC2 = -1.4e-5) .MODEL S1AMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-10 VOFF=-2) .MODEL S1BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -2 VOFF = -10) .MODEL S2AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -0.8 VOFF = 0.3) .MODEL S2BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = 0.3 VOFF = -0.8) FNDS Note: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global

Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley.


SABER ELECTRICAL MODEL

```
REV August 2001
template FDS2572 n2,n1,n3
electrical n2,n1,n3
{
var i iscl
dp..model dbodymod = (isl = 4e-11,nl = 1.131,rs = 4.4e-3,trs1 = 2e-3,trs2 = 1e-6,cjo = 1.44e-9,m = 0.67,tt = 7.4e-8,xti = 4.2
dp..model dbreakmod = (rs = 0.38,trs1 = 2e-3,trs2 = -8.9e-6)
dp..model dplcapmod = (c_{i0} = 5e - 10, isl = 10e - 30, nl = 10, m = 0.7)
m..model mstrongmod = (type = n, vto = 4.05, kp = 85, is = 1e-30, tox = 1)
m..model mmedmod = (type =_n,vto = 3.35,kp = 5,is = 1e-30, tox = 1)
m..model mweakmod = (type =_n,vto = 2.76,kp = 0.05,is = 1e-30, tox = 1,rs = 0.1)
sw vcsp..model s1amod = (ron = 1e-5,roff = 0.1,von = -10,voff = -2)
sw vcsp..model s1bmod = (ron =1e-5,roff = 0.1,von = -2,voff = -10)
sw vcsp..model s2amod = (ron = 1e-5,roff = 0.1,von=-0.8,voff = 0.3)
                                                                                                                  LDRAIN
sw_vcsp..model s2bmod = (ron = 1e-5,roff = 0.1,von = 0.3,voff = -0.8)
                                                                              DPLCAP
                                                                                                                          DRAIN
c.ca n12 n8 = 8e -10
                                                                                                                           02
                                                                           10
c.cb n15 n14 = 8e -10
                                                                                                                 RLDRAIN
                                                                                        RSLC1
c.cin n6 n8 = 2e -9
                                                                                        51
                                                                            BSI C2
dp.dbody n7 n5 = model=dbodymod
                                                                                          ISCL
dp.dbreak n5 n11 = model=dbreakmod
                                                                                                  DBREAK
                                                                                         50
dp.dplcap n10 n5 = model=dplcapmod
                                                                                       6 8
                                                                     ESG
                                                                                                         11
                                                                                                               EVTHRES
spe.ebreak n11 n7 n17 n18 = 157.4
                                                                                        21
                                                                                \frac{19}{8}
spe.eds n14 n8 n5 n8 = 1
                                                                                                    MWEAK
                                                     LGATE
                                                                   EVTEMP
                                                            RGATE +
spe.egs n13 n8 n6 n8 = 1
                                               GATE
                                                                                                     EBREA
                                                                     \binom{18}{22}
                                                                                          MMED
spe.esg n6 n10 n6 n8 = 1
                                                             q
                                                                  20
                                                                                   MSTR
                                                     RLGATE
spe.evthres n6 n21 n19 n8 = 1
                                                                                                                 LSOURCE
spe.evtemp n20 n6 n18 n22 = 1
                                                                                   CIN
                                                                                                                          SOURCE
                                                                                           8
i.it n8 n17 = 1
                                                                                                 RSOURCE
                                                                                                                RLSOURCE
l.lgate n1 n9 = 5.61 e-9
                                                                                                       RBREAK
                                                                            14
13
l.ldrain n2 n5 = 1.0 e-9
                                                                                                    17
                                                                                                                18
l.lsource n3 n7 = 1.98 e-9
                                                                                                              ₹rvtemp
                                                                             S2B
                                                                                   CE
                                                                                                                19
                                                               CA
res.rlgate n1 n9 = 56.1
                                                                                                   ΙТ
                                                                                                     (♠
                                                                                        14
                                                                                                                 VBAT
res.rldrain n2 n5 = 10
                                                                      FGS
                                                                                FDS
res.rlsource n3 n7 = 19.8
                                                                                                                22
m.mstrong n16 n6 n8 n8 = model = mstrongmod, l=1u, w=1 u
                                                                                                      RVTHRES
m.mmed n16 n6 n8 n8 = model = mmedmod. | = 1u. w = 1 u
m.mweak n16 n21 n8 n8 = model = mweakmod, I = 1u, w = 1 u
res.rbreak n17 n18 = 1, tc1 = 1.1e-3,tc2 = -3e-7
res.rdrain n50 n16 = 2.1e-2, tc1 = 1e-2,tc2 = 3e -5
res.rgate n9 n20 = 1.47
res.rslc1 n5 n51 = 1e-6, tc1 = 3e-3,tc2 =1e -6
res.rslc2 n5 n50 = 1e3
res.rsource n8 n7 = 1.5e-2. tc1=4.5e-3.tc2=1e-6
res.rvthres n22 n8 = 1, tc1 = -3e-3,tc2 = -1.4e-5
res.rvtemp n18 n19 = 1, tc1 = -5e-3,tc2 = 2e-6
sw_vcsp.s1a n6 n12 n13 n8 = model = s1amod
sw_vcsp.s1b n13 n12 n13 n8 = model = s1bmod
sw vcsp.s2a n6 n15 n14 n13 = model = s2amod
sw vcsp.s2b n13 n15 n14 n13 = model = s2bmod
v.vbat n22 n19 = dc = 1
equations {
i (n51->n50) + = iscl
iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/65))**3)))
```


SPICE THERMAL MODEL

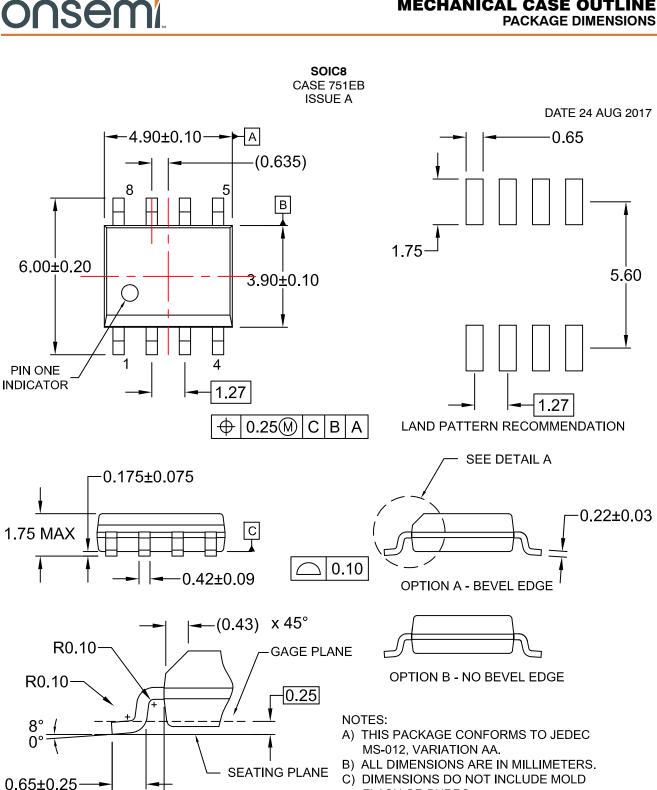

REV August 2001 FDS2572 Copper Area = 1 in ²			DN
CTHERM1 TH 8 2.0 e-3 CTHERM2 8 7 5.0 e-3 CTHERM3 7 6 1.0 e-2 CTHERM4 6 5 4.0 e-2 CTHERM5 5 4 9.0 e-2 CTHERM6 4 3 2.0 e-1 CTHERM6 3 2 1	RTHERM1		CTHERM1
CTHERM8 2 TL 3	RTHERM2	≱ †	CTHERM2
RTHERM1 TH 8 1.0 e-1 RTHERM2 8 7 5.0 e-1 RTHERM3 7 6 1 RTHERM4 6 5 5 RTHERM5 5 4 8 RTHERM6 4 3 12 RTHERM7 3 2 18 RTHERM8 2 TL 25	RTHERM3		CTHERM3
	RTHERM4	⊥ ⊥	CTHERM4
SABER THERMAL MODEL		Ĺ	
Copper Area = 1 in ² template thermal_model th tl thermal_c th, tl { ctherm.ctherm1 th c2 = 2.0 e-3	RTHERM5	5	CTHERM5
ctherm.ctherm2 c2 c3 = $5.0 e-3$ ctherm.ctherm3 c3 c4 = $1.0 e-2$ ctherm.ctherm4 c4 c5 = $4.0 e-2$ ctherm.ctherm5 c5 c6 = $9.0 e-2$ ctherm.ctherm6 c6 c7 = $2.0 e-1$ ctherm.ctherm7 c7 c8 = 1	RTHERM6		CTHERM6
ctherm.ctherm8 c8 tl = 3	RTHERM7	≱ †	CTHERM7
rtherm.rtherm1 th c2 = 1.0 e-1 rtherm.rtherm2 c2 c3 = 5.0 e-1 rtherm.rtherm3 c3 c4 = 1 rtherm.rtherm4 c4 c5 = 5 rtherm.rtherm5 c5 c6 = 8 rtherm.rtherm6 c6 c7 = 12 rtherm.rtherm7 c7 c8 = 18 rtherm.rtherm8 c8 tl = 25	RTHERM8		CTHERM8
}			

TABLE 1. THERMAL MODELS

COMPONANT	0.04 in ²	0.28 in ²	0.52 in ²	0.76 in 2	1.0 in ²
CTHERM6	1.2e-1	1.5e-1	2.0e-1	2.0e-1	2.0e-1
CTHERM7	0.5	1.0	1.0	1.0	1.0
CTHERM8	1.3	2.8	3.0	3.0	3.0
RTHERM6	26	20	15	13	12
RTHERM7	39	24	21	19	18
RTHERM8	55	38.7	31.3	29.7	25

MECHANICAL CASE OUTLINE

C) DIMENSIONS DO NOT INCLUDE MOLD FLASH OR BURRS. D) LANDPATTERN STANDARD: SOIC127P600X175-8M

DOCUMENT NUMBER:	98AON13735G Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	SOIC8		PAGE 1 OF 1	

(1.04)

DETAIL À SCALE 21

onsemi and OnSemi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make charges without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products herein. special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

5.60

0.22±0.03

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>