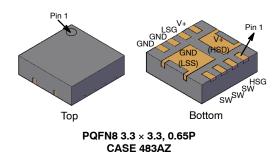
onsemi

MOSFET – Dual, N-Channel, Asymmetric, Power Clip, POWERTRENCH[®], 30 V

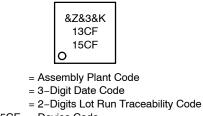
FDPC8013S

General Description

This device includes two specialized N–Channel MOSFETs in a dual package. The switch node has been internally connected to enable easy placement and routing of synchronous buck converters. The control MOSFET (Q1) and synchronous SyncFETTM (Q2) have been designed to provide optimal power efficiency.


Features

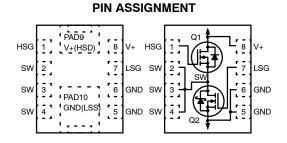
Q1: N-Channel


- Max $R_{DS(on)} = 9.6 \text{ m}\Omega$ at $V_{GS} = 4.5 \text{ V}$, $I_D = 10 \text{ A}$ Q2: N-Channel
- Max $R_{DS(on)} = 2.7 \text{ m}\Omega$ at $V_{GS} = 4.5 \text{ V}$, $I_D = 22 \text{ A}$
- Low Inductance Packaging Shortens Rise/Fall Times, Resulting in Lower Switching Losses
- MOSFET Integration Enables Optimum Layout for Lower Circuit Inductance and Reduced Switch Node Ringing
- RoHS Compliant

Applications

- Computing
- Communications
- General Purpose Point of Load

MARKING DIAGRAM



13CF15CF = Device Code

&Z

&З

&K

ORDERING INFORMATION

Device	Package	Shipping [†]
FDPC8013S	PQFN8	3000 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, <u>BRD8011/D</u>.

MOSFET MAXIMUM RATINGS (T_A = 25 $^{\circ}\text{C}$ unless otherwise noted)

Symbol		Parameter	Q1	Q2	Unit
V _{DS}	Drain to Source Voltage	Source Voltage			V
V _{GS}	Gate to Source Voltage	±20	±20	V	
Ι _D	Drain Current	– Continuous (Package limited) $T_C = 25^{\circ}C$	20	55	А
		– Continuous $T_A = 25^{\circ}C$	13 (Note 1a)	26 (Note 1b)	
		- Pulsed	40	100	
E _{AS}	Single Pulse Avalanche Energy	(Note 3)	21	97	mJ
PD	Power Dissipation for Single	$T_A = 25^{\circ}C$	1.6 (Note 1a)	2.0 (Note 1b)	W
	Operation	$T_A = 25^{\circ}C$	0.8 (Note 1c)	0.9 (Note 1d)	
T _J , T _{STG}	Operating and Storage Junction	Temperature Range	–55 to	o +150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS

Symbol	Characteristic	Value	Value	Unit
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	77 (Note 1a)	63 (Note 1b)	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	151 (Note 1c)	135 (Note 1d)	
$R_{\theta JC}$	Thermal Resistance, Junction to Case	5.0	3.5	

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise noted)

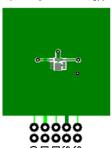
Symbol	Parameter	Parameter Test Condition		Min	Тур	Max	Unit		
OFF CHAF	OFF CHARACTERISTICS								
BV _{DSS}	Drain to Source Breakdown Voltage	$ I_D = 250 \; \mu \text{A}, \; V_{\text{GS}} = 0 \; \text{V} \\ I_D = 1 \; \text{m} \text{A}, \; V_{\text{GS}} = 0 \; \text{V} $	Q1 Q2	30 30	-	-	V		
$\frac{\Delta \text{BV}_{\text{DSS}}}{\Delta \text{T}_{\text{J}}}$	Breakdown Voltage Temperature Coefficient	$I_D = 250 \ \mu$ A, referenced to 25°C $I_D = 10 \ m$ A, referenced to 25°C	Q1 Q2	-	16 20		mV/°C		
I _{DSS}	Zero Gate Voltage Drain Current		Q1 Q2			1 500	μΑ μΑ		
I _{GSS}	Gate to Source Leakage Current, Forward		Q1 Q2	-	-	100 100	nA nA		

ON CHARACTERISTICS

V _{GS(th)}	Gate to Source Threshold Voltage	$\begin{array}{l} V_{GS} = V_{DS}, \ I_D = 250 \ \mu A \\ V_{GS} = V_{DS}, \ I_D = 1 \ m A \end{array}$	Q1 Q2	1.2 1.2	1.5 1.7	3.0 3.0	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate to Source Threshold Voltage Temperature Coefficient	$I_D = 250 \ \mu$ A, referenced to 25°C $I_D = 10 \ m$ A, referenced to 25°C	Q1 Q2		-5 -6		mV/°C
R _{DS(on)}	Drain to Source On Resistance	$ \begin{array}{l} V_{GS} = 10 \text{ V}, \text{ I}_{D} = 13 \text{ A} \\ V_{GS} = 4.5 \text{ V}, \text{ I}_{D} = 10 \text{ A} \\ V_{GS} = 10 \text{ V}, \text{ I}_{D} = 13 \text{ A}, \text{ T}_{J} = 125^{\circ}\text{C} \end{array} $	Q1	- -	4.6 6.7 6.6	6.4 9.6 9.2	mΩ
			Q2	-	1.4 2.0 1.9	1.9 2.7 2.6	
9 _{FS}	Forward Transconductance	$V_{DS} = 5 \text{ V}, \text{ I}_{D} = 13 \text{ A}$ $V_{DS} = 5 \text{ V}, \text{ I}_{D} = 26 \text{ A}$	Q1 Q2		53 168	-	S

DYNAMIC CHARACTERISTICS

C _{iss}	Input Capacitance	Q1: V_{DS} = 15 V, V_{GS} = 0 V, f = 1 MHz	Q1 Q2	-	827 2785	-	pF
C _{oss}	Output Capacitance	Q2: V _{DS} = 15 V, V _{GS} = 0 V, f = 1 MHz	Q1 Q2	-	333 997	-	pF
C _{rss}	Reverse Transfer Capacitance		Q1 Q2	-	44 128	-	pF
Rg	Gate Resistance		Q1 Q2		0.5 0.5		Ω


ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise noted) (continued)

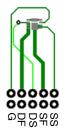
Symbol	Parameter	Test C	Condition	Туре	Min	Тур	Max	Unit
SWITCHIN	IG CHARACTERISTICS							
t _{d(on)}	Turn-On Delay Time	Q1: V_{DD} = 15 V, I _D = 13 A, R _{GEN} = 6 Ω		Q1 Q2	-	6 11	-	ns
t _r	Rise Time	Q2: V _{DD} = 15 V, I _D = 26 A, R _{GEN} = 6 Ω		Q1 Q2	-	2 5	-	ns
t _{d(off)}	Turn-Off Delay Time			Q1 Q2	-	16 30	-	ns
t _f	Fall Time				-	2 4	-	ns
Qg	Total Gate Charge	V_{GS} = 0 V to 10 V	Q1 V _{DD} = 15 V,	Q1 Q2	-	13 44	-	nC
		V_{GS} = 0 V to 4.5 V	I _D = 13 A Q2	Q1 Q2	-	6 21	-	nC
Q_gs	Gate to Source Gate Charge		V _{DD} = 15 V, I _D = 26 A	Q1 Q2	-	2.2 7.2	-	nC
Q _{gd}	Gate to Drain "Miller" Charge	1		Q1 Q2	-	1.9 6.6	-	nC
DRAIN-SC	DURCE DIODE CHARACTERISTICS							

V _{SD}	Source to Drain Diode Forward Voltage		Q1 Q2	-	0.80 0.77	1.2 1.2	V
t _{rr}	Reverse Recovery Time	Q1: I _F = 13 A, di/dt = 100 A/µs	Q1 Q2	-	22 29	-	ns
Q _{rr}	Reverse Recovery Charge	Q2: I _F = 26 A, di/dt = 300 A/µs	Q1 Q2		7 30		nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

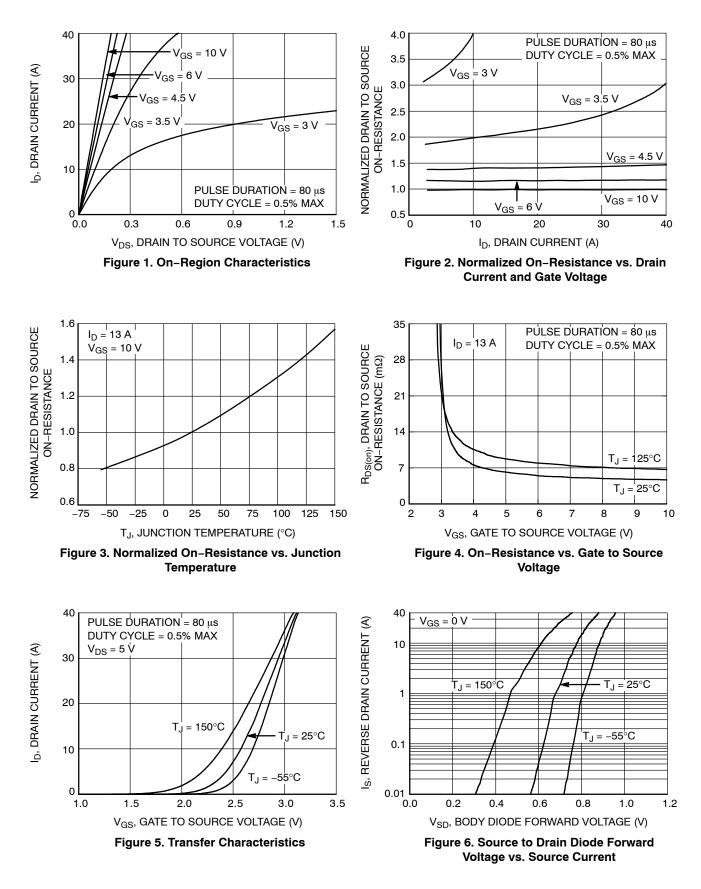
 $R_{\theta JA}$ is determined with the device mounted on a 1 in² pad 2 oz copper pad on a 1.5 × 1.5 in. board of FR-4 material. $R_{\theta JC}$ is guaranteed 1. by design while $R_{\theta CA}$ is determined by the user's board design.

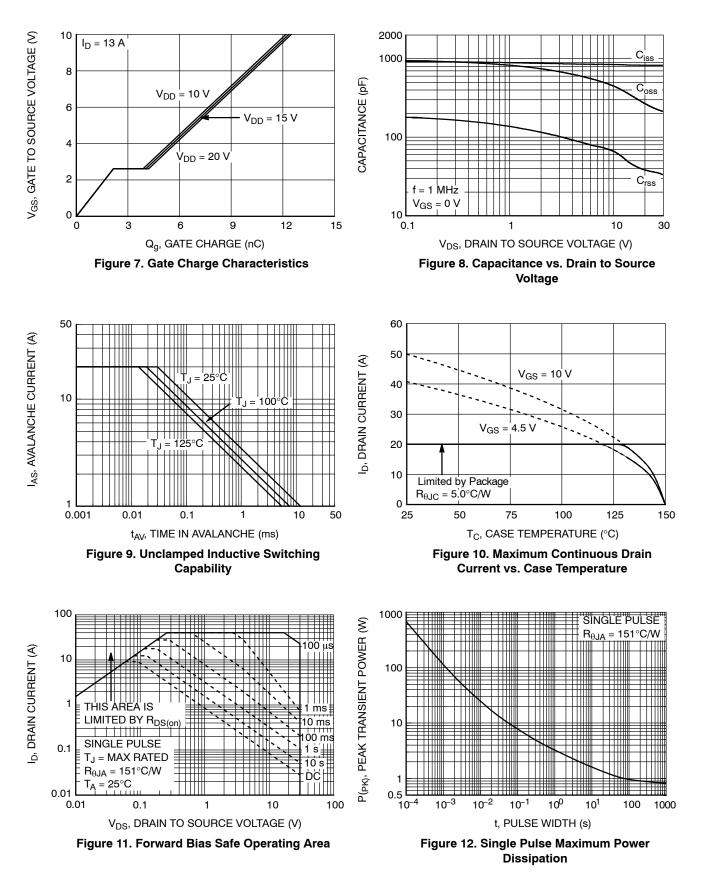
a. 77°C/W when mounted on a 1 in² pad of 2 oz copper



b. 63°C/W when mounted on a 1 in² pad of 2 oz copper

SPSSP


c. 151°C/W when mounted on a minimum pad of 2 oz copper


d. 135°C/W when mounted on a minimum pad of 2 oz copper

- 2. Pulse Test: Pulse Width < 300 μ s, Duty cycle < 2.0%.
- Q1: E_{AS} of 21 mJ is based on starting T_J = 25°C; N-ch: L = 1.2 mH, I_{AS} = 6 A, V_{DD} = 23 V, V_{GS} = 10 V. 100% test at L= 0.1 mH, I_{AS} = 14.5 A. Q2: E_{AS} of 97 mJ is based on starting T_J = 25°C; N-ch: L = 0.6 mH, I_{AS} = 18 A, V_{DD} = 23 V, V_{GS} = 10 V. 100% test at L= 0.1 mH, I_{AS} = 32.9 A.
 As an N-ch device, the negative V_{gs} rating is for low duty cycle pulse occurrence only. No continuous rating is implied.

TYPICAL CHARACTERISTICS (Q1 N-CHANNEL) (T, = 25°C unless otherwise noted)

TYPICAL CHARACTERISTICS (Q1 N-CHANNEL) (T_J = 25°C unless otherwise noted) (continued)

TYPICAL CHARACTERISTICS (Q1 N-CHANNEL) (T_J = 25°C unless otherwise noted) (continued)

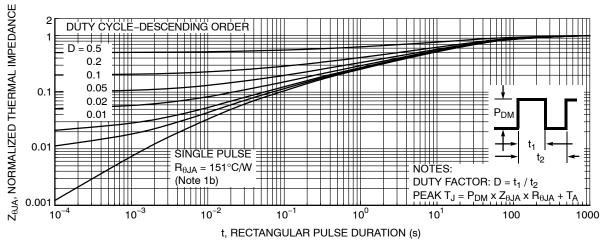
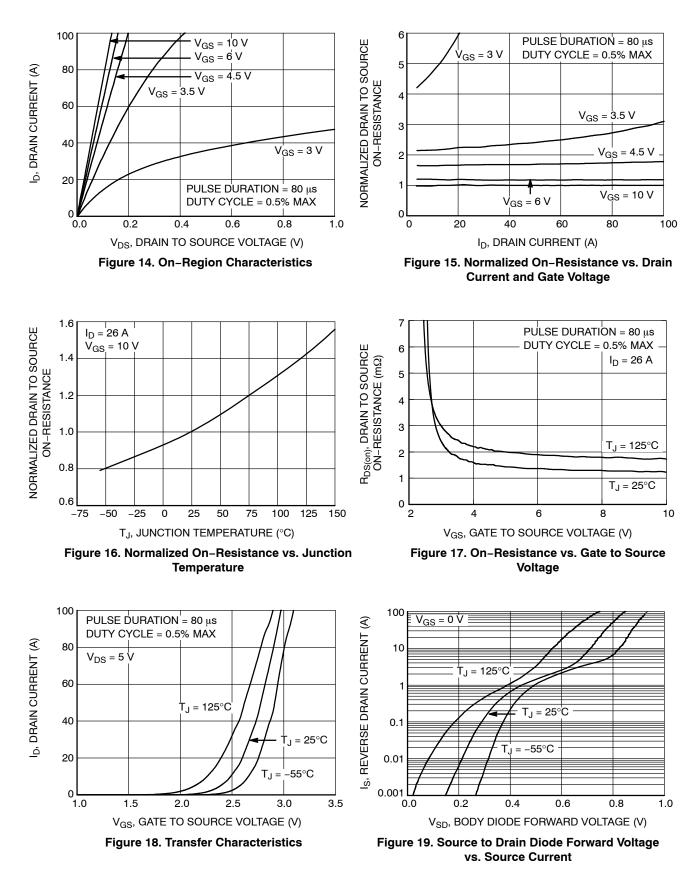
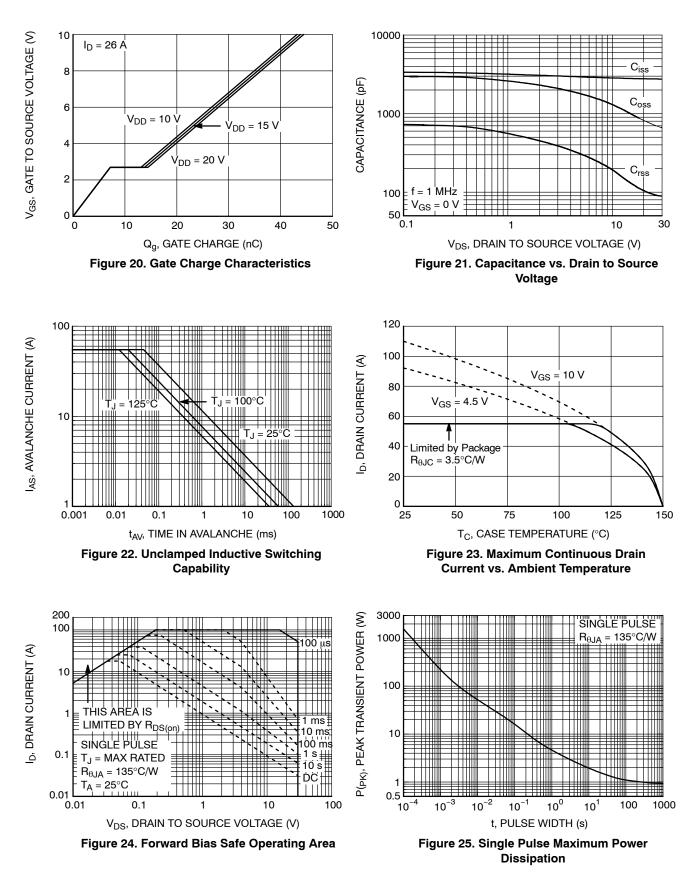




Figure 13. Junction-to-Ambient Transient Thermal Response Curve

TYPICAL CHARACTERISTICS (Q2 N-CHANNEL) (T_J = 25°C unless otherwise noted)

TYPICAL CHARACTERISTICS (Q2 N-CHANNEL) (T_J = 25°C unless otherwise noted) (continued)

TYPICAL CHARACTERISTICS (Q2 N-CHANNEL) (T_J = 25°C unless otherwise noted) (continued)

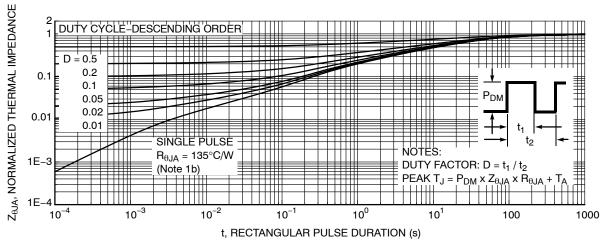
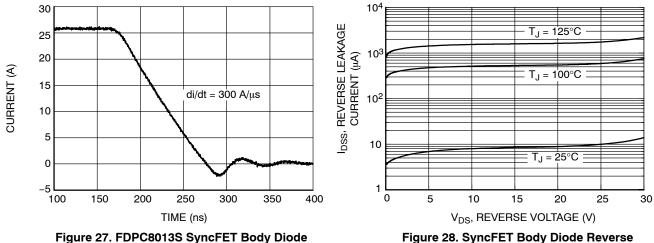



Figure 26. Junction-to-Ambient Transient Thermal Response Curve

TYPICAL CHARACTERISTICS (continued)

SyncFET Schottky Body Diode Characteristics

onsemi's SyncFET process embeds a Schottky diode in parallel with POWERTRENCH MOSFET. This diode exhibits similar characteristics to a discrete external Schottky diode in parallel with a MOSFET. Figure 27 shows the reverse recovery characteristic of the FDPC8013S. Schottky barrier diodes exhibit significant leakage at high temperature and high reverse voltage. This will increase the power in the device.

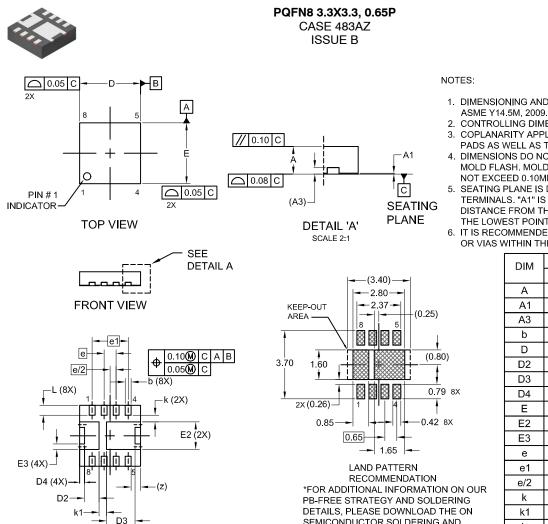

Reverse Recovery Characteristics

Figure 28. SyncFET Body Diode Reverse Leakage vs. Drain–Source Voltage

POWERTRENCH is a registered trademark of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries.

SyncFET is a trademark of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries.

semi

BOTTOM VIEW

SEMICONDUCTOR SOLDERING AND MOUNTING TECHNIQUES REFERENCE MANUAL, SOLDERRM/D.

DATE 14 FEB 2022

- 1. DIMENSIONING AND TOLERANCING PER
- CONTROLLING DIMENSION: MILLIMETERS
 COPLANARITY APPLIES TO THE EXPOSED
- PADS AS WELL AS THE TERMINALS. 4. DIMENSIONS DO NOT INCLUDE BURSS OR MOLD FLASH. MOLD FLASH OR BURRS DOES NOT EXCEED 0.10MM.
- 5. SEATING PLANE IS DEFINED BY THE TERMINALS. "A1" IS DEFINED AS THE DISTANCE FROM THE SEATING PLANE TO THE LOWEST POINT ON THE PACKAGE BODY.
- 6. IT IS RECOMMENDED TO HAVE NO TRACES OR VIAS WITHIN THE KEEP OUT AREA.

DIM	MIL	MILLIMETERS				
DIW	MIN	NOM	MAX			
Α	0.70	0.75	0.80			
A1	0.00		0.05			
A3	-	0.20 REF				
b	0.27	0.32	0.37			
D	3.20	3.30	3.40			
D2	0.69	0.79	0.89			
D3	1.45	1.55	1.65			
D4	0.16	0.26	0.36			
E	3.20	3.30	3.40			
E2	1.40	1.50	1.60			
E3		0.30 REF				
е	Ľ	0.65 BSC	;			
e1		1.95 BSC	;			
e/2	0.325 BSC					
k	0.36 REF					
k1	0.40 REF					
L	0.44	0.54	0.64			
Z	1	0.52 REF				

DOCUMENT NUMBER:	PBAON13675G Electronic versions are uncontrolled except when accessed directly from the Document Reposite Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.						
DESCRIPTION: PQFN8 3.3X3.3, 0.65P PAGE 1 OF 1							
the right to make changes without furth purpose, nor does onsemi assume an	er notice to any products herein. onsemi making the products herein. onsemi making liability arising out of the application or use	LLC dba onsemi or its subsidiaries in the United States and/or other cour es no warranty, representation or guarantee regarding the suitability of its pri- of any product or circuit, and specifically disclaims any and all liability, incl e under its patent rights nor the rights of others.	oducts for any particular				

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales