

April 2025

FDMS015N04B

N-Channel PowerTrench[®] MOSFET 40 V, 100 A, 1.5 m Ω

Features

- $R_{DS(on)}$ = 1.13 m Ω (Typ.) @ V_{GS} = 10 V, I_D = 50 A
- Advanced Package and Silicon Combination for Low R_{DS(on)} and High Efficiency
- · Fast Switching Speed
- · 100% UIL Tested
- · RoHS Compliant

Description

This N-Channel MOSFET is produced using Fairchild Semiconductor's advance PowerTrench® process that has been tailored to minimize the on-state resistance while maintaining superior switching performance.

Applications

- Synchronous Rectific on for A. VS ver
- Battery Protecti Cir.
- Motor Driver and winter supplies

MOSFL Maximum Ratings T = 25°C unless otherwise noted.

Symbol	M. A. Ses	Parameter		FDMS015N04B	Unit
V_{DSS}	Drain to Source Voltage			40	V
V _{GSS}	Gate to Source Voltage			±20	V
6	Drain Current	- Continuous (T _C = 25°C)		100	Α
		- Continuous (T _A = 25°C)	(Note 1a)	31.3	A
I_{DM}	Drain Current	- Pulsed	(Note 2)	400	Α
E _{AS}	Single Pulsed Avalanche Energy		(Note 3)	526	mJ
P _D	Power Dissipation	(T _C = 25°C)		104	W
L D	Fower Dissipation	$(T_A = 25^{\circ}C)$	(Note 1a)	2.5	W
T _J , T _{STG}	Operating and Storage Temperatu	ıre Range		-55 to +150	°C

Thermal Characteristics

Symbol	Parameter	FDMS015N04	4B Unit
$R_{\theta JC}$	Thermal Resistance, Junction to Case, Max.	1.2	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient, Max. (Note	e 1a) 50	30/00

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FDMS015N04B	FDMS015N04B	Power 56	13 "	12 mm	3000 units

Electrical Characteristics $T_C = 25^{\circ}C$ unless otherwise noted.

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Off Charac	cteristics					
BV _{DSS}	Drain to Source Breakdown Voltage	$I_D = 250 \mu\text{A}, V_{GS} = 0 \text{V}$	40	-	-	V
ΔBV _{DSS} / ΔT _J	Breakdown Voltage Temperature Coefficient	I_D = 250 μ A, Referenced to 25°C	-	37	-	mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 32 V, V _{GS} = 0 V	-	-	1	μΑ
I _{GSS}	Gate to Body Leakage Current	V _{GS} = ±20 V, V _{DS} = 0 V	-	-	±100	nA

On Characteristics

V _{GS(th)}	Gate Threshold Voltage	$V_{GS} = V_{DS}, I_D = 250 \mu A$			4.0	V.
R _{DS(on)}	Static Drain to Source On Resistance	$V_{GS} = 10 \text{ V}, I_D = 50 \text{ A}$	7-	1 3	15	mΩ
g _{FS}	Forward Transconductance	V _{DS} = 5 V, I _D = 50 A	-	./1	1	S

Dynamic Characteristics

-						
C _{iss}	Input Capacitance	V 20 V V	- 1	6560	8725	pF
Coss	Output Capacitance	V _{DS} = 20 V, V _{GS} = V f = 1 MHz	0-17	2795	3720	pF
C _{rss}	Reverse Transfer Capacitance		-	162	-	pF
C _{oss} (er)	Energy Releted Output Capacitance	Vr - 20 VGE - 0 V	7.5	3896	19-	pF
Q _{g(tot)}	Total Gate Charge at 10V		5	91	118	nC
Q_{gs}	Gate to Source Gate Charge	$V_{DS} = 7 V$, $I_D = 50 A$	-	26	-	nC
Q _{gs2}	Gate Charge Threshold to Plateau	' _{GS} = c	0/1/1	9	-	nC
Q_{gd}	Gate to Drain "Miller" Charc	(Note 4)	16.	16	-	nC
ESR	Equivalent Series Resista :e	f = 1 MHz	-	1.4	-	Ω

Switching Characteristic

t _{d(on)}	Turn-On Priny 1 e	-	34	78	ns
t _r	Turn-C Rise Time V _{D 1} = 20 V, I _D = 50 A	-	24	58	ns
t _{d(off)}	Tu. On Delay ne $V_{GS} = 10 V$, $R_G = 4.7 \Omega$	-	71	152	ns
t _f	irn- ff Fie (Note 4	-	26	62	ns

Drain-S vrce love Characteristics

I_S	aximun Continuous Drain to Source Diode Forward Current			-	100	Α
I _{SM}	Maximun. Pulsed Crain to Source Diode Forward Current			-	400	Α
V_{SD}	Drain to Source Diode Forward Voltage V _{GS} = 0 V, I _{SD} = 50 A			-	1.3	V
t _{rr}	Reverse Recovery Fin.e	$V_{GS} = 0 \text{ V}, I_{SD} = 50 \text{ A}$	-	78	/ -	ns
Q_{r_i}	Reverse Recovery Charge	$dI_F/dt = 100 A/\mu s$	-	90	-	nC

Notes:

^{1.}R_{8JA} is determined with the device mounted on a 1in² pad 2 oz copper pad on a 1.5 x 1.5 in. board of FR-4 material. R_{8JC} is guaranteed by design while R_{8CA} is determined by the user's board design.

a. 50 °C/W when mounted on a 1 in² pad of 2 oz copper.

 b. 125 °C/W when mounted on a minimum pad of 2 oz copper.

- 2. Repetitive rating: pulse-width limited by maximum junction temperature.
- 3. L = 3 mH, I_{AS} = 18.72 A, starting T_{J} = 25°C.
- 4. Essentially independent of operating temperature typical characteristics.

Typical Performance Characteristics

Figure 1. On-Region Characteristics

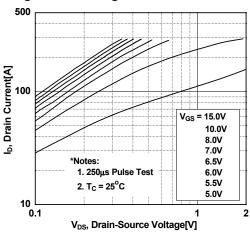


Figure 3. On-Resistance Variation vs.

Drain Current and Gate Voltage

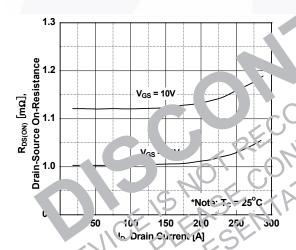
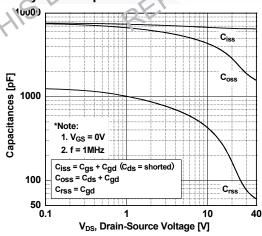



Figure 5. Capacitance Characteristics

Figure 2. Transfer Characteristics

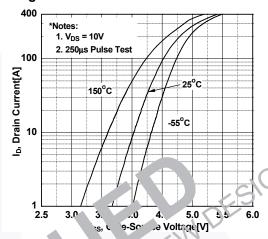


Fig re Bo / Diodo Forward Voltage
Litation vs. Source Current
and Temperature

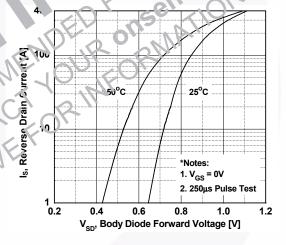
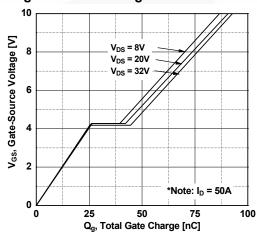



Figure 6. Gate Charge Characteristics

Typical Performance Characteristics (Continued)

Figure 7. Breakdown Voltage Variation vs. Temperature

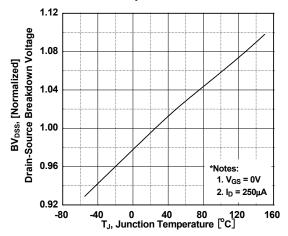


Figure 9. Maximum Safe Operating Area

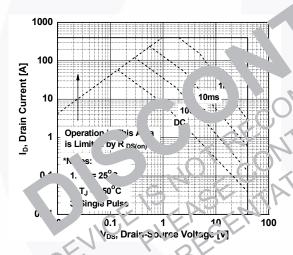


Figure 11. Eoss vs. Drain to Source Voltage

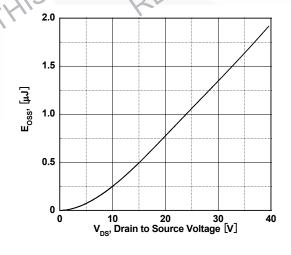
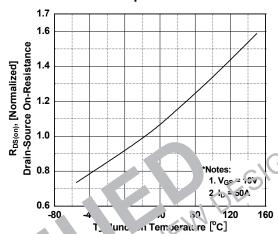



Figure 8. On-Resistance Variation vs. Temperature

Tul. 10. ...aximu:n Drain Current vs. Case Temperature

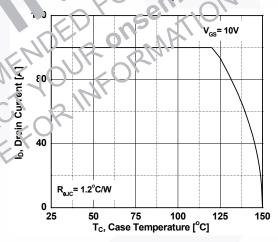
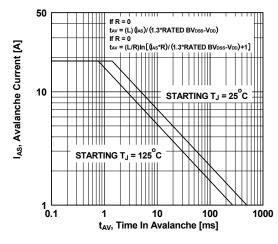
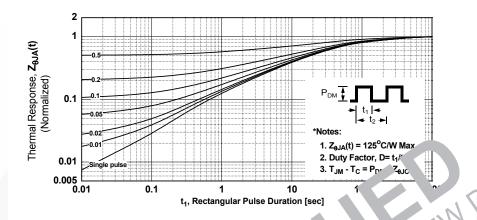




Figure 12. Unclamped Inductive Switching Capability

Typical Performance Characteristics (Continued)

Figure 13. Transient Thermal Response Curve

Figure 14. Gate Charge Test Circuit & Waveform

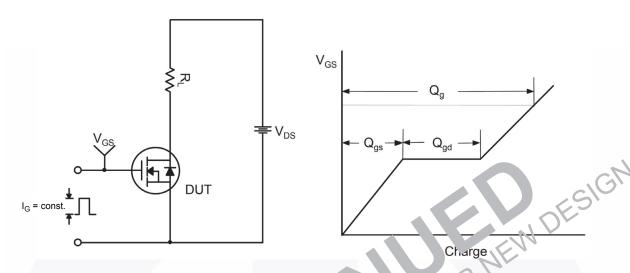


Figure 15. Resistive Swit ling is Sircuit & Waveforms

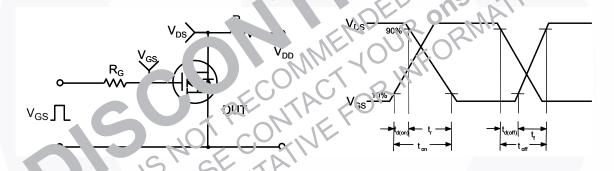
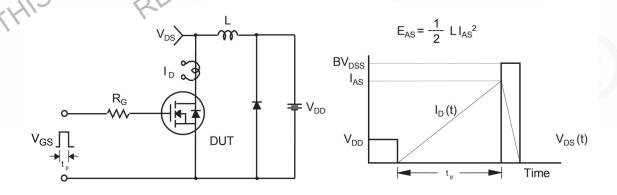
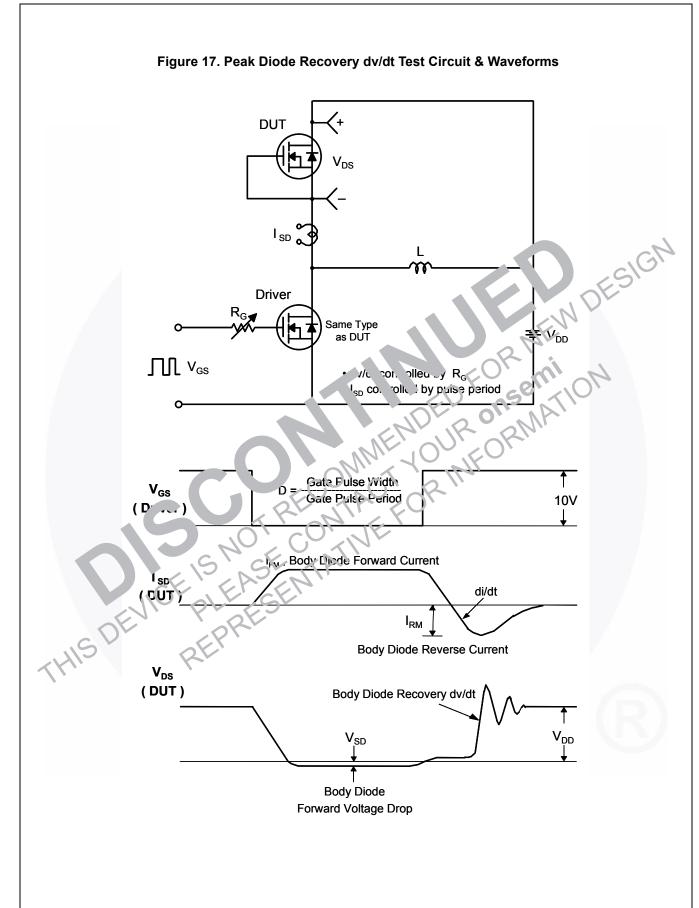
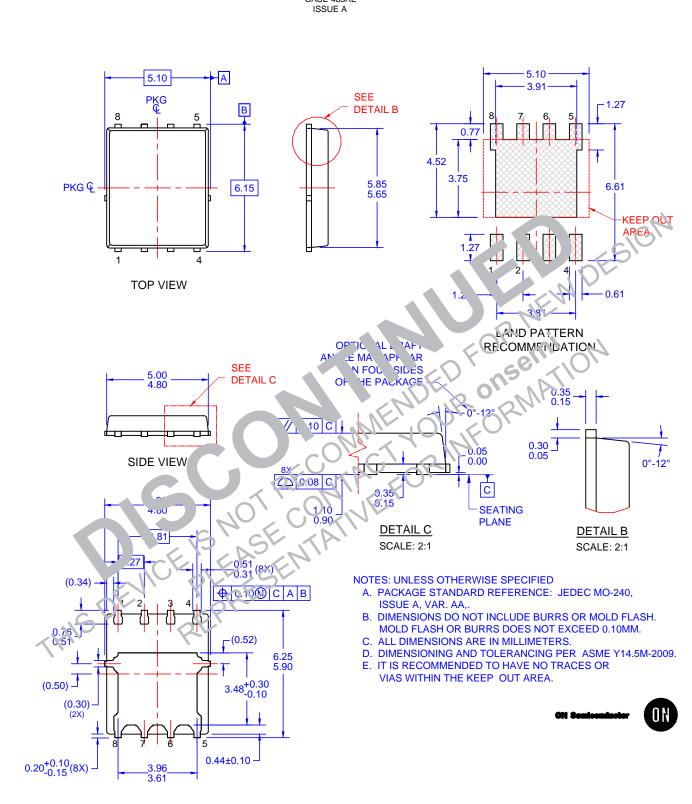





Figure 16. Unclamped Inductive Switching Test Circuit & Waveforms

©2012 Fairchild Semiconductor Corporation FDMS015N04B Rev. D

BOTTOM VIEW

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor nakes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify an

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlitt@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative