onsemi

<u>MOSFET</u> – P-Channel POWERTRENCH[®]

-12 V, -8 A, 22 mΩ

FDME905PT

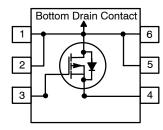
General Description

This device is designed specifically for battery charging or load switching in cellular handset and other ultraportable applications. It features a MOSFET with low on-state resistance.

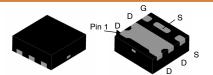
The MicroFET^M 1.6x1.6 Thin package offers exceptional thermal performance for its physical size and is well suited to switching and linear mode applications.

Features

- Max $R_{DS(on)} = 22 \text{ m}\Omega$ at $V_{GS} = -4.5 \text{ V}$, $I_D = -8 \text{ A}$
- Max $R_{DS(on)} = 26 \text{ m}\Omega$ at $V_{GS} = -2.5 \text{ V}$, $I_D = -7.3 \text{ A}$
- Max $R_{DS(on)} = 97 \text{ m}\Omega$ at $V_{GS} = -1.8 \text{ V}$, $I_D = -3.8 \text{ A}$
- Low Profile: 0.55 mm Maximum in the New Package MicroFET 1.6x1.6 Thin
- Free from Halogenated Compounds and Antimony Oxides
- These Devices are Pb-Free and are RoHS Compliant


Symbol	Parameter	Ratings	Unit				
V _{DS}	Drain to Source Voltage	-12	V				
V _{GS}	Gate to Source Voltage	±8	V				
۱ _D	Drain Current Continuous (T _A = 25°C) (Note 1a) Pulsed	8 30	A				
P _D	Power Dissipation (T _A = 25°C) (Note 1a) (T _A = 25°C) (Note 1b)	2.1 0.7	W				
T _J , T _{STG}	Operating and Storage Junction Temperature Range	-55 to +150	°C				

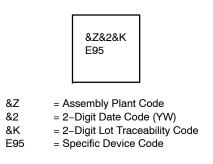
MOSFET MAXIMUM RATINGS ($T_A = 25^{\circ}$ C. Unless otherwise specified)


Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

V _{DS}	I _D MAX	R _{DS(on)} MAX
–12 V	-8 A	$22 \text{ m}\Omega$

ELECTRICAL CONNECTION

P-Channel MOSFET



Top View

Bottom View

MicroFET (UDFN6) CASE 517DV

MARKING DIAGRAM

ORDERING INFORMATION

See detailed ordering and shipping information on page 2 of this data sheet.

THERMAL CHARACTERISTICS

Symbol	Parameter	Ratings	Unit
$R_{ extsf{ heta}JC}$	Thermal Resistance, Junction to Case	4.5	°C/W
$R_{ hetaJA}$	Thermal Resistance, Junction to Ambient (Note 1a)	60	°C/W
$R_{ hetaJA}$	Thermal Resistance, Junction to Ambient (Note 1b)	175	°C/W

1. Repetitive rating: pulse-width limited by maximum junction temperature.

a) 60 °C/W when mounted on a 1 in² pad of 2 oz copper

b). 175 °C/W when mounted on a minimum pad of 2 oz copper

PACKAGE MARKING AND ORDERING INFORMATION

Device Marking	Device	Package	Reel Size [†]	Tape Width	Quantity
E95	FDME905PT	MicroFET 1.6x1.6 Thin (Pb-Free / Halide Free)	7″	8 mm	5,000 Units

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
OFF CHARACT	ERISTICS	-		-		
BV _{DSS}	Drain to Source Breakdown Voltage	$I_D = -250 \ \mu\text{A}, \ V_{GS} = 0 \ V$	-12	-	-	V
$\Delta \text{BV}_{\text{DSS}} / \Delta \text{T}_{\text{J}}$	Breakdown Voltage Temperature Coefficient	$I_D = -250 \ \mu\text{A}$, referenced to 25°C	_	-8.7	_	mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	V_{DS} = -9.6 V, V_{GS} = 0 V	-	-	-1	μA
I _{GSS} Gate to Source Leakage Current, Forward		$V_{GS} = \pm 8 \text{ V}, V_{DS} = 0 \text{ V}$	_	_	±100	nA
ON CHARACTE	RISTICS	-		-		
V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_D = -250 \ \mu A$	-0.4	-0.7	-1.0	V
$\Delta V_{GS(th)}/\Delta T_J$	Gate to Source Threshold Voltage Temperature Coefficient	$I_D = -250 \ \mu\text{A}$, referenced to 25°C	_	2.5	_	mV/°C
R _{DS(on)}	Drain to Source On Resistance	$ \begin{array}{l} V_{GS}=-4.5 \; V, \; I_{D}=-8 \; A \\ V_{GS}=-2.5 \; V, \; I_{D}=-7.3 \; A \\ V_{GS}=-1.8 \; V, \; I_{D}=-3.8 \; A, \\ V_{GS}=-4.5 \; V, \; I_{D}=-8 \; A, \; T_{J}=125^{\circ} C \end{array} $		18 22 28 23	22 26 97 32	mΩ
9 _{FS}	Forward Transconductance	$V_{DS} = -5 \text{ V}, \text{ I}_{D} = -8 \text{ A}$	-	38	-	S

DYNAMIC CHARACTERISTICS

C _{iss}	Input Capacitance	$V_{\rm DS} = -6 \text{V}, V_{\rm GS} = 0 \text{V},$	_	1740	2315	pF
C _{oss}	Output Capacitance	f = 1 MHz	-	350	525	pF
C _{rss}	Reverse Transfer Capacitance		-	311	465	pF

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise noted) (continued)

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
WITCHING C	HARACTERISTICS					
t _{d(on)}	Turn-On Delay Time	$V_{DD} = -6 \text{ V}, \text{ I}_{D} = -8 \text{ A},$ $V_{GS} = -4.5 \text{ V}, \text{ R}_{GEN} = 6 \Omega$	-	9.5	19	ns
t _r	Rise Time		-	8	16	ns
t _{d(off)}	Turn-Off Delay Time		-	90	144	ns
t _f	Fall Time		-	42	67	ns
Qg	Total Gate Charge	$V_{DD} = -6 V, I_D = -8 A$ $V_{GS} = -4.5 V$	-	14	20	nC
Q _{gs}	Gate to Source Gate Charge		-	2.4	-	nC
Q_gd	Gate to Drain "Miller" Charge		-	3	-	nC
RAIN-SOUR	CE DIODE CHARACTERISTICS					
V_{SD}	Source to Drain Diode Forward	$V_{GS} = 0 V, I_S = -8 A (Note 2)$	-	-0.8	-1.2	V
	Voltage	$V_{GS} = 0 V, I_S = -1.8 A$ (Note 2)	-	-0.7	-1.2	V
t _{rr}	Reverse Recovery Time	$I_F = -8$ A, di/dt = 100 A/ μ s	-	17	31	ns
Q _{rr}	Reverse Recovery Charge		_	4.5	10	nC

 Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
 10
 nC

 2. Pulse Test: Pulse Width < 300 μs, Duty cycle < 2.0%.</td>
 200
 10
 nC

TYPICAL CHARACTERISTICS

 $(T_J = 25^{\circ}C \text{ UNLESS OTHERWISE NOTED})$

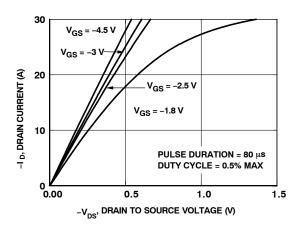


Figure 1. On-Region Characteristics

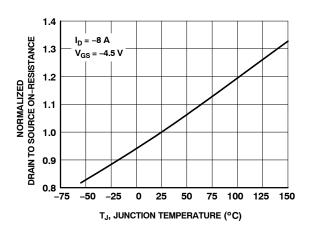


Figure 3. Normalized On-Resistance vs. Junction Temperature

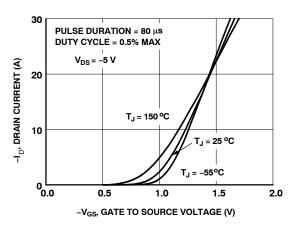


Figure 5. Transfer Characteristics

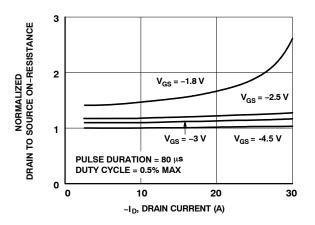


Figure 2. Normalized On-Resistance vs. Drain Current and Gate Voltage

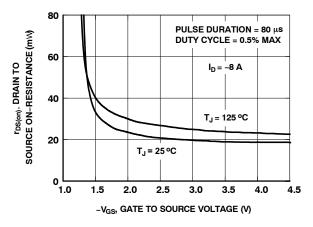
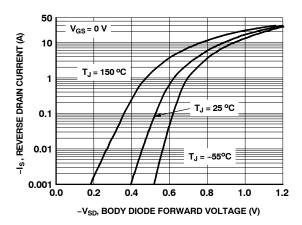



Figure 4. On-Resistance vs. Gate to Source Voltage

TYPICAL CHARACTERISTICS

 $(T_J = 25^{\circ}C \text{ UNLESS OTHERWISE NOTED})$

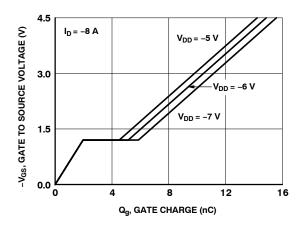


Figure 7. Gate Charge Characteristics

Figure 9. Forward Bias Safe Operating Area

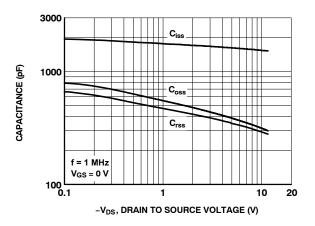


Figure 8. Capacitance vs. Drain to Source Voltage

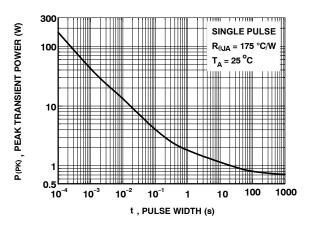


Figure 10. Single Pulse Maximum Power Dissipation

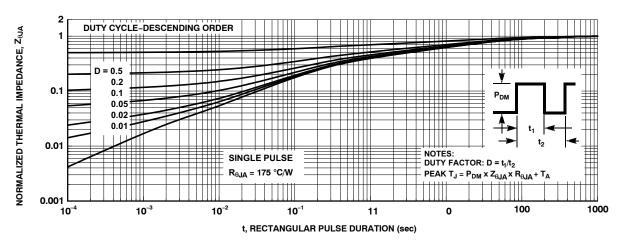
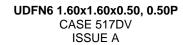
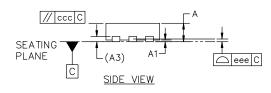
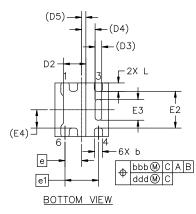



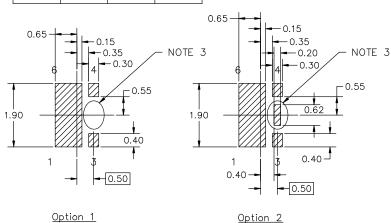
Figure 11. Junction-to-Ambient Transient Thermal Response Curve

POWERTRENCH is a registered trademark and MicroFET is a trademark of Semiconductor Components Industries, LLC dba "**onsemi**" or its affiliates and/or subsidiaries in the United States and/or other countries.



DATE 31 OCT 2024





DIM	MIN	NOM	MAX		
A	0.45	0.50	0.55		
A1	0.00	0.00 0.02 0			
A3		0.15 REF			
D		1.60 BSC			
D2	0.62	0.67	0.72		
D3	0.20 REF				
D4	0.40 REF				
D5	0.125 REF				
E		1.60 BSC			
E2	1.05	1.10	1.15		
E3	0.57	0.62	0.67		
E4		0.55 REF			
b	0.20 0.25 0.30				
е	0.50 BSC				
e1	1.00 BSC				
L	0.20 0.25 0.30				

MILLIMETERS

TOLERA	NCE FORM AND POSITION
aaa	0.10
bbb	0.10
ccc	0.10
ddd	0.05
eee	0.08

NOTES:

- DIMENSIONING AND TOLERANCING AS PER ASMEY14.5M, 2018. CONTROLLING DIMENSION: MILLIMETERS. NO VIAS OR TRACES ALLOWED IN THE 1.
- 2.
- 3. AREA

*For additional information on our Pb-Free strategy and soldering details, please download the onsemi Soldering and Mounting Techniques Reference manual. SOLDERRM/D.

RECOMMENDED MOUNTING FOOTPRINT

DOCUMENT NUMBER:	98AON13700G	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	UDFN6 1.60x1.60x0.50, 0.5	0, 0.50P PAGE 1 OF			
onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights of others.					

© Semiconductor Components Industries, LLC, 2016

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>