

MOSFET - P-Channel POWERTRENCH®

-20 V, -6 A, 37 mΩ

FDME510PZT

General Description

This device is designed specifically for battery charging or load switching in cellular handset and other ultraportable applications. It features a MOSFET with low on-state resistance.

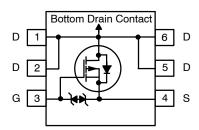
The MicroFET $^{\text{TM}}$ 1.6x1.6 Thin package offers exceptional thermal performance for its physical size and is well suited to switching and linear mode applications.

Features

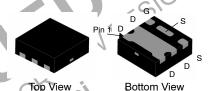
- Max $r_{DS(on)} = 37 \text{ m}\Omega$ at $V_{GS} = -4.5 \text{ V}$, $I_D = -5 \text{ A}$
- Max $r_{DS(on)} = 50 \text{ m}\Omega$ at $V_{GS} = -2.5 \text{ V}$, $I_D = -4 \text{ A}$
- Max $r_{DS(on)} = 65 \text{ m}\Omega$ at $V_{GS} = -1.8 \text{ V}$, $I_D = -3 \text{ A}$
- Max $r_{DS(on)} = 100 \text{ m}\Omega$ at $V_{GS} = -1.5 \text{ V}$, $I_D = -2 \text{ A}$
- Low Profile: 0.55 mm Maximum in the New Package MicroFET 1.6x1.6 Thin
- Free from Halogenated Compounds and Antimony Oxides
- HBM ESD Protection Level > 2400 V (Note 3)
- These Devices are Pb-Free and are RoHS Compliant

MOSFET MAXIMUM RATINGS (T_A = 25°C, Unless otherwise specified)

Symbol	Parameter	Ratings	Unit
V_{DS}	Drain to Source Voltage	-20	V
V_{GS}	Gate to Source Voltage	±8	V
I _D	Drain Current Continuous (T _A = 25°C) (Note 1a) Pulsed	-6 -15	A
P _D	Power Dissipation for Single Operation (T _A = 25°C) (Note 1a) (T _A = 25°C) (Note 1b)	2.1 0.7	W
T _J , T _{STG}	Operating and Storage Junction Temperature Range	–55 to +150	°C


Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS


Symbol	Parameter	Ratings	Unit
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient (Note 1a)	60	°C/W
$R_{ heta JA}$	Thermal Resistance, Junction to Ambient (Note 1b)	175	°C/W

V _{DS}	I _D MAX	R _{DS(on)} MAX	
-20 V	-6 A	37 m Ω	

ELECTRICAL CONNECTION

P-Channel MOSFET

MicroFET (UDFN6) CASE 517DV

MARKING DIAGRAM

&Z = Assembly Plant Code
 &2 = 2-Digit Date Code (YW)
 &K = 2-Digit Lot Traceability Code
 7T = Specific Device Code

ORDERING INFORMATION

See detailed ordering and shipping information on page 2 of this data sheet.

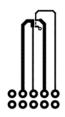
PACKAGE MARKING AND ORDERING INFORMATION

Device Marking	Device	Package	Shipping [†]
7T	FDME510PZT	MicroFET 1.6x1.6 Thin (Pb-Free / Halide Free)	5,000 units / Tape & Reel

[†] For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
OFF CHARACT	ERISTICS					
BV _{DSS}	Drain to Source Breakdown Voltage	$I_D = -250 \mu A, V_{GS} = 0 V$	-20	-	_	V
$\Delta BV_{DSS}/\Delta T_{J}$	Breakdown Voltage Temperature Coefficient	I_D = -250 μ A, referenced to 25°C	-	-13	-	mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = -16 \text{ V}, V_{GS} = 0 \text{ V}$	-	-	-1	μΑ
I_{GSS}	Gate to Source Leakage Current	$V_{GS} = \pm 8 \text{ V}, V_{DS} = 0 \text{ V}$		-	±10	μΑ
ON CHARACTE	ERISTICS				210°	
V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_D = -250 \mu\text{A}$	-0.4	-0.5	-1.0	V
$\Delta V_{GS(th)}/\Delta T_J$	Gate to Source Threshold Voltage Temperature Coefficient	I_D = -250 μ A, referenced to 25°C		1/3	ı	mV/°C
^r DS(on)	Drain to Source On Resistance	$\begin{aligned} &V_{GS} = -4.5 \text{ V, } I_D = -5 \text{ A} \\ &V_{GS} = -2.5 \text{ V, } I_D = -4 \text{ A} \\ &V_{GS} = -1.8 \text{ V, } I_D = -3 \text{ A} \\ &V_{GS} = -1.5 \text{ V, } I_D = -2 \text{ A} \\ &V_{GS} = -4.5 \text{ V, } I_D = -5 \text{ A, } T_J = 125 ^{\circ}\text{C} \end{aligned}$	emi	31 38 48 57 40	37 50 65 100 60	mΩ
9FS	Forward Transconductance	$V_{DS} = -5 \text{ V}, I_D = -5 \text{ A}$	AA.	21	_	S
DYNAMIC CHA	RACTERISTICS	WE OU OF				
C _{iss}	Input Capacitance	$V_{DS} = -10 \text{ V}, V_{GS} = 0 \text{ V},$	-	1120	1490	pF
C _{oss}	Output Capacitance	f = 1 MHz	-	155	210	pF
C _{rss}	Reverse Transfer Capacitance	KE KKEO'	-	140	210	pF
SWITCHING CH	HARACTERISTICS	CORTE				
t _{d(on)}	Turn-On Delay Time	$V_{DD} = -10 \text{ V}, I_{D} = -5 \text{ A},$	-	6.5	13	ns
t _r	Rise Time	$V_{GS} = -4.5 \text{ V}, R_{GEN} = 6 \Omega$	-	10	16	ns
$t_{d(off)}$	Turn-Off Delay Time		1	93	149	ns
t _f	Fall Time		-	54	86	ns
Q_g	Total Gate Charge	$V_{DD} = -10 \text{ V}, I_D = -5 \text{ A}$	-	16	22	nC
Q_{gs}	Gate to Source Gate Charge	$V_{GS} = -4.5 \text{ V}$	-	1.6	=	nC
Q_{gd}	Gate to Drain "Miller" Charge		-	4	-	nC
DRAIN-SOURC	E DIODE CHARACTERISTICS					
V_{SD}	Source to Drain Diode Forward Voltage	$V_{GS} = 0 \text{ V, } I_S = -1.6 \text{ A (Note 2)}$	-	-0.6	-1.2	V
t _{rr}	Reverse Recovery Time	I _F = -5 A, di/dt = 100 A/μs	-	38	61	ns
Q _{rr}	Reverse Recovery Charge		-	16	29	nC


Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

NOTES:

1. $R_{\theta,JA}$ is determined with the device mounted on a 1 in² pad 2 oz copper pad on a 1.5 × 1.5 in. board of FR-4 material. $R_{\theta,JC}$ is determined by the user's board design.

 a) 60°C/W when mounted on a 1 in² pad of 2 oz copper.

b) 175°C/W when mounted on a minimum pad of 2 oz copper.

- 2. Pulse Test: Pulse Width $< 300 \mu s$, Duty cycle < 2.0%.
- 3. The diode connected between the gate and source serves only as protection ESD. No gate overvoltage rating is implied.

TYPICAL CHARACTERISTICS (T_J = 25°C, unless otherwise noted)

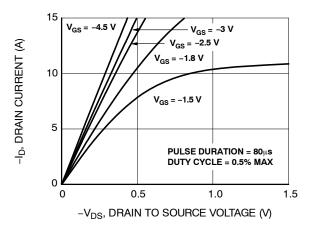


Figure 1. On-Region Characteristics

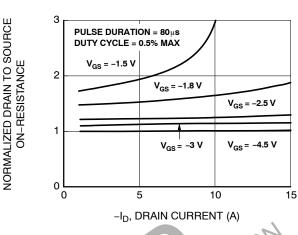


Figure 2. Normalized On-Resistance vs.

Drain Current and Gate Voltage

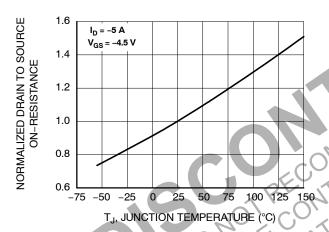


Figure 3. Normalized On Resistance vs. Junction Temperature

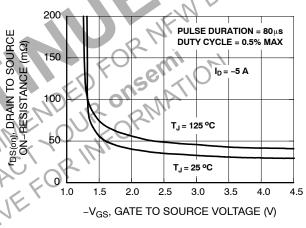


Figure 4. On-Resistance vs. Gate to Source Voltage

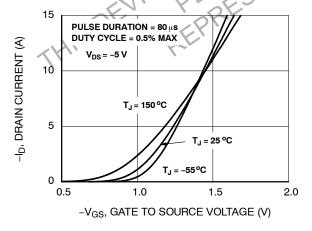


Figure 5. Transfer Characteristics

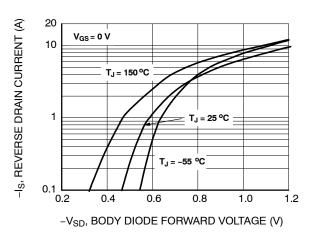


Figure 6. Source to Drain Diode Forward Voltage vs. Source Current

TYPICAL CHARACTERISTICS (T_J = 25°C, unless otherwise noted) (continued)

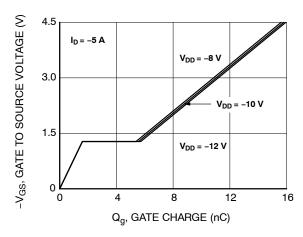


Figure 7. Gate Charge Characteristics

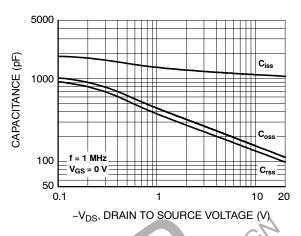


Figure 8. Capacitance vs. Drain to Source Voltage

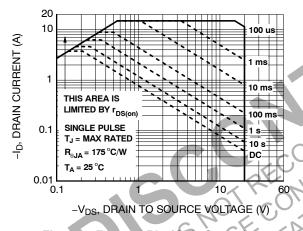


Figure 9. Forward Bias Safe Operating

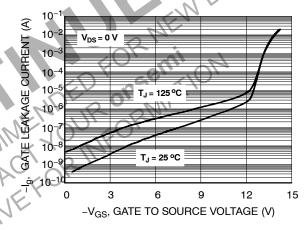


Figure 10. Gate Leakage Current vs.

Gate to Source Voltage

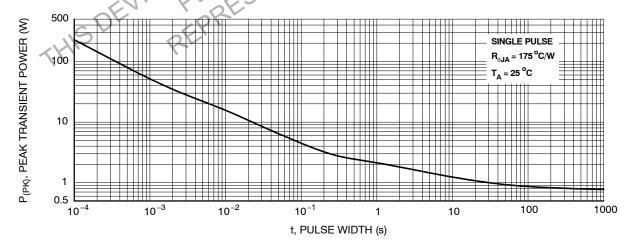


Figure 11. Single Pulse Maximum Power Dissipation

TYPICAL CHARACTERISTICS (T_J = 25°C, unless otherwise noted) (continued)

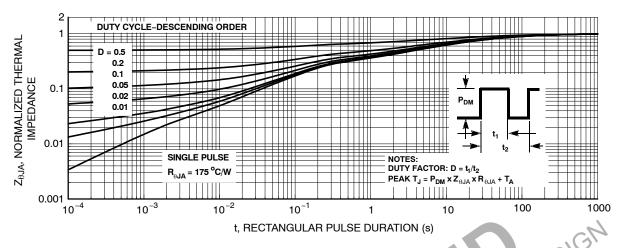


Figure 12. Junction-to-Ambient Transient Thermal Response Curve

COMMENDED FOR MATION

COMMENDED FOR MATION

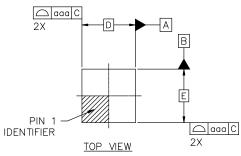
COMMENDED FOR MATION

REPRESENTATIVE FOR INFORMATION

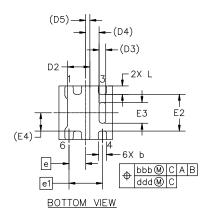
REPRESENTATIVE PLEASESENTATIVE

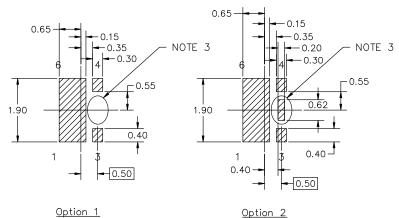
REPRESENTATIVE

REPRESENTATI


POWERTRENCH is a registered trademark and MicroFET is a trademark of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries.

UDFN6 1.60x1.60x0.50, 0.50P CASE 517DV **ISSUE A**


DATE 31 OCT 2024



IDENTIF	IER	·			
		TOP VIEW		2X	
// c	ccc C		^ ^		
		<u> </u>	<u> </u>	<u></u>	
SEATING PLANE	Y	L _(A3) A	1		
,		, ,		eee C	
	ت	SIDE VIEW			

MILLIMETERS				
DIM	MIN	NOM	MAX	
А	0.45	0.50	0.55	
A1	0.00	0.02	0.05	
А3		0.15 REF		
D		1.60 BSC		
D2	0.62 0.67 0.72			
D3	0.20 REF			
D4	0.40 REF			
D5	0.125 REF			
Е	1.60 BSC			
E2	1.05	1.10	1.15	
E3	0.57	0.62	0.67	
E4	0.55 REF			
b	0.20 0.25 0.30			
е	0.50 BSC			
e1	1.00 BSC			
L	0.20	0.25	0.30	

TOLERA	NCE FORM AND POSITION
aaa	0.10
bbb	0.10
ccc	0.10
ddd	0.05
eee	0.08

NOTES:

- DIMENSIONING AND TOLERANCING AS PER ASMEY14.5M, 2018.
 CONTROLLING DIMENSION: MILLIMETERS.
- NO VIAS OR TRACES ALLOWED IN THE **AREA**

RECOMMENDED MOUNTING FOOTPRINT

*For additional information on our Pb—Free strategy and soldering details, please download the onsemi Soldering and Mounting Techniques Reference manual. SOLDERRM/D.

DOCUMENT NUMBER:	98AON13700G	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	UDFN6 1.60x1.60x0.50, 0.50P		PAGE 1 OF 1	

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves brisefin and of 160 m are trademarks of defined values of services and of the confined values and of the values of the confined values and of the values of the confined values and of the values of the v special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales