

MOSFET – Dual P-Channel POWERTRENCH®

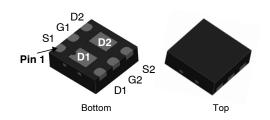
-20 V, -2.6 A, 142 m Ω

FDME1023PZT

Description

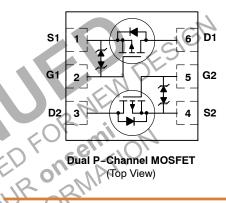
This device is designed specifically as a single package solution for the battery charges switch in cellular handset and other ultra-portable applications. It features two independent P-Channel MOSFETs with low on-state resistance for minimum conduction losses. When connected in the typical common source configuration, bi-directional current flow is possible.

The MicroFET 1.6×1.6 **Thin** package offers exceptional thermal performance for it's physical size and is well suited to switching and linear mode applications.


Features

- Max $R_{DS(on)} = 142 \text{ m}\Omega$ at $V_{GS} = -4.5 \text{ V}$, $I_D = -2.3 \text{ A}$
- Max $R_{DS(on)} = 213 \text{ m}\Omega$ at $V_{GS} = -2.5 \text{ V}$, $I_D = -1.8 \text{ A}$
- Max $R_{DS(on)} = 331 \text{ m}\Omega$ at $V_{GS} = -1.8 \text{ V}$, $I_D = -1.5 \text{ A}$
- Max $R_{DS(on)} = 530 \text{ m}\Omega$ at $V_{GS} = -1.5 \text{ V}$, $I_D = -1.2 \text{ A}$
- Low Profile: 0.55 mm Maximum in the New Package MicroFET 1.6 x 1.6 Thin
- HBM ESD Protection Level > 1600 V (Note 3)
- NTATIVEFOR This Device is Pb–Free, Halide Free and RoHS Compliant
 Typical Applications
 Load Switch
 Battery Charging
 Battery Disconnect Switch

ABSOLUTE MAXIMUM RATINGS (TA = 25°C unless otherwise noted)


Symbol	Parameter	Value	Unit
V _{DS}	Drain to Source Voltage	-20	V
V_{GS}	Gate to Source Voltage	±8	V
I _D	Drain Current - Continuous (Note 1a) T _A = 25°C - Pulsed	-2.6 -6	A
P _D	$\label{eq:power Dissipation for Single Operation} \begin{array}{lll} - & T_A = 25^\circ C \\ - & (\text{Note 1a}) & T_A = 25^\circ C \\ - & (\text{Note 1b}) & T_A = 25^\circ C \end{array}$	1.4 0.6	W
T _J , T _{STG}	Operating and Storage Junction Temperature Range	–55 to +150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

UDFN6 1.6 × 1.6 0.5P (MicroFET™ 1.6×1.6 Thin) CASE 517DW

ELECTRICAL CONNECTION

MARKING DIAGRAM

&Z&2&K 2T 0

= Assembly Plant Code

= 2-Digit Date Code (Year and Week)

= 2-Digit Lot Run Code

= Specific Device Code

ORDERING INFORMATION

See detailed ordering and shipping information on page 6 of this data sheet.

THERMAL CHARACTERISTICS

Symbol	Parameter	Value	Unit
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient (Single Operation) (Note 1a)	90	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient (Single Operation) (Note 1b)	195	

ELECTRICAL CHARACTERISTICS $T_A = 25^{\circ}C$ unless otherwise noted

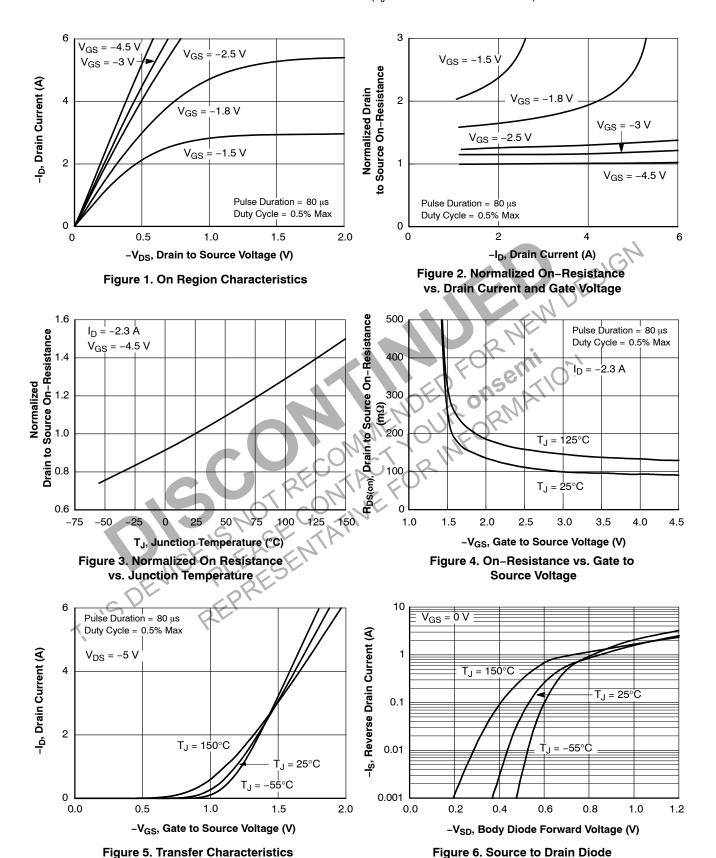
Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Characteris	stics					
BV _{DSS}	Drain to Source Breakdown Voltage	$I_D = -250 \mu A, V_{GS} = 0 V$	-20	_	-	V
$\frac{\Delta BV_{DSS}}{\Delta T_{J}}$	Breakdown Voltage Temperature Coefficient	I_D = -250 μA, referenced to 25°C	_	-12	-	mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = -16 V, V _{GS} = 0 V	-	_	-1	μΑ
I _{GSS}	Gate to Source Leakage Current	V _{GS} = ±8 V, V _{DS} = 0 V	-	_	±10	μΑ
On Characteris	stics				10,	7
V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_{D} = -250 \mu A$	-0.4	-0.6	-1.0	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate to Source Threshold Voltage Temperature Coefficient	$I_D = -250 \mu A$, referenced to 25°C		12	-	mV/°C
R _{DS(on)}	Drain to Source On Resistance	$V_{GS} = -4.5 \text{ V}, I_D = -2.3 \text{ A}$	BIL	95	142	mΩ
		$V_{GS} = -2.5 \text{ V}, I_D = -1.8 \text{ A}$	105	120	213	
		$V_{GS} = -1.8 \text{ V}, I_D = -1.5 \text{ A}$	6e /	150	331	
		$V_{GS} = -1.5 \text{ V}, I_D = -1.2 \text{ A}$	77	190	530	mΩ
		$V_{GS} = -4.5 \text{ V, } I_D = -2.3 \text{ A,}$ $T_J = 125^{\circ}\text{C}$	5/4.	128	190	mΩ
9 _{FS}	Forward Transconductance	$V_{DS} = -4.5 V$, $I_D = -2.3 A$	-	7	ı	S
Dynamic Char	acteristics	O RO OK				
C _{iss}	Input Capacitance	$V_{DS} = -10 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$	-	305	405	pF
C _{oss}	Output Capacitance	D. 1/1/2	_	55	75	pF
C _{rss}	Reverse Transfer Capacitance		-	50	75	pF
Switching Cha	racteristics					
t _{d(on)}	Turn-On Delay Time	V _{DD} = -10 V, I _D = -1 A,	_	4.7	10	ns
t _r	Rise Time	$V_{GS} = -4.5 \text{ V}, R_{GEN} = 6 \Omega$	-	4.8	10	ns
t _{d(off)}	Turn-Off Delay Time		-	33	53	ns
t _f	Fall Time		-	16	29	ns
Qg	Total Gate Charge	$V_{DD} = -10 \text{ V}, I_D = -2.3 \text{ A},$ $V_{GS} = -4.5 \text{ V}$	-	5.5	7.7	nC
Q _{gs}	Gate to Source Gate Charge	V _{GS} = -4.5 V	-	0.6	-	nC
Q_{gd}	Gate to Drain "Miller" Charge		-	1.4	1	nC
Drain-Source	Diode Characteristics					
V_{SD}	Source to Drain Diode Forward Voltage	V _{GS} = 0 V, I _S = -0.9 A (Note 2)	-	-0.8	-1.2	V
t _{rr}	Reverse Recovery Time	I _F = -2.3 A, di/dt = 100 A/μs	-	16	29	ns
Q _{rr}	Reverse Recovery Charge	7	_	4.4	10	nC


Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

NOTES:

1. R_{6,IA} is determined with the device mounted on a 1 in² pad 2 oz copper pad on a 1.5 x 1.5 in. board of FR-4 material. R_{6,IC} is guaranteed by design while $R_{\theta JA}$ is determined by the user's board design.

a. 90°C/W when mounted on a 1 in² pad of 2 oz copper



b. 195°C/W when mounted on a minimum pad of 2 oz copper

- 2. Pulse Test: Pulse Width < 300 μs, Duty Cycle < 2.0%
- 3. The diode connected between gate and source serves only as protection against ESD. No gate overvoltage rating is implied.

TYPICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

Forward Voltage vs. Source Current

TYPICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted) (continued)

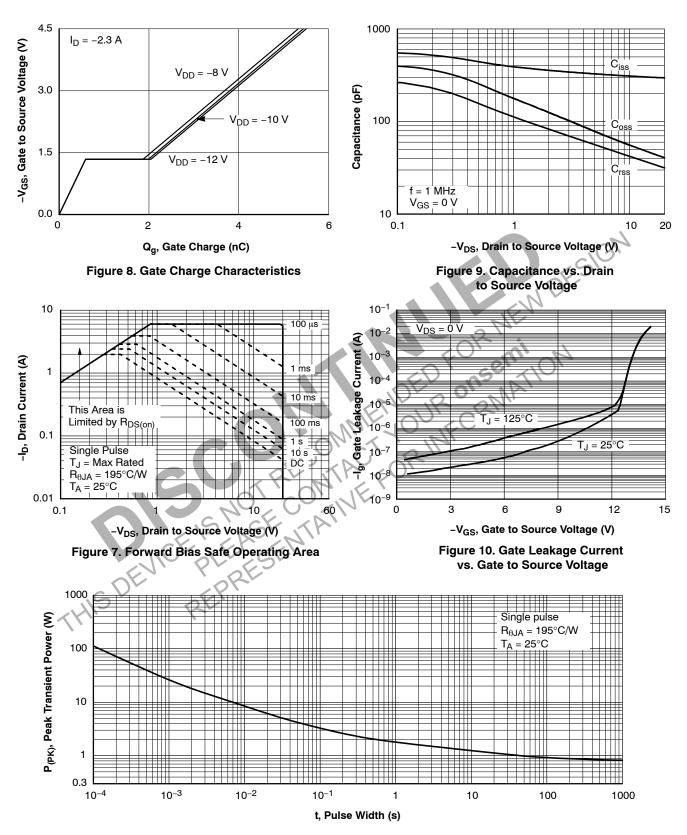


Figure 11. Single Pulse Maximum Power Dissipation

TYPICAL CHARACTERISTICS (T, = 25°C unless otherwise noted) (continued)

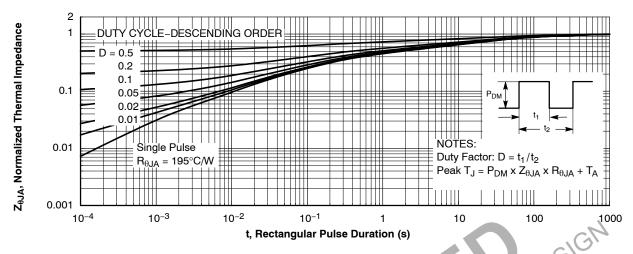
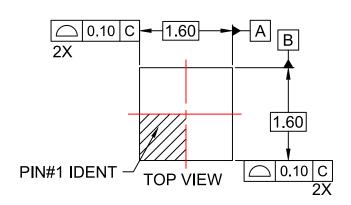


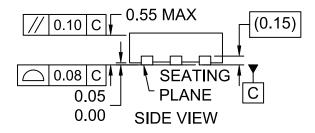
Figure 12. Junction-to-Ambient Transient Thermal Response Curve

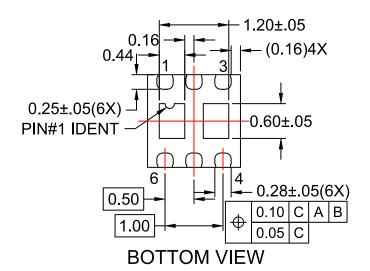
PACKAGE MARKING AND ORDERING INFORMATION

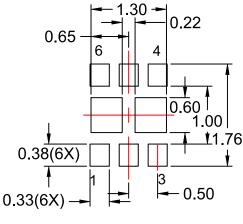
Device	Device Marking	Package Type	Reel Size	Tape Width	Shipping [†]
FDME1023PZT	2Т	UDFN6 1.6×1.6 0.5P (MicroFET 1.6×1.6 Thin) (Pb-Free/Halide Free)	DETRO	8 mm	5000 / Tape & Reel
†For information on Specifications Broo	chure, BRD8011/D.	tions, including part orientation at	nd tape sizes, ple	ase refer to our	Tape and Reel Packaging

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.


POWERTRENCH is a registered trademark of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries.


MicroFET is a trademark of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries.




UDFN6 1.6x1.6, 0.5PCASE 517DW
ISSUE O

DATE 31 OCT 2016

RECOMMENDED LAND PATTERN

NOTES:

- A. PACKAGE DOES NOT CONFORM TO ANY JEDEC STANDARD.
- B. DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 2009.
- D. LAND PATTERN RECOMMENDATION IS EXISTING INDUSTRY LAND PATTERN.

DOCUMENT NUMBER:	98AON13701G	Electronic versions are uncontrolled except when accessed directly from the Document Repos Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	UDFN6 1.6x1.6, 0.5P		PAGE 1 OF 1	

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales