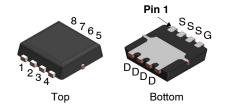


MOSFET - N-Channel, POWERTRENCH®

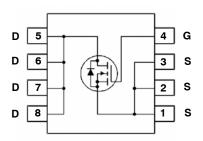
30 V, 16 A, 14.3 mohm

FDMC8882

Description


This N-Channel MOSFET is produced using **onsemi**'s advanced POWETRENCH process that has been especially tailored to minimize the on-state resistance. This device is well suited for Power Management and load switching applications common in Notebook Computers and Portable Battery Packs.

Features


- Max $R_{DS(on)} = 14.3 \text{ m}\Omega$ at $V_{GS} = 10 \text{ V}$, $I_D = 10.5 \text{ A}$
- Max $R_{DS(on)} = 22.5 \text{ m}\Omega$ at $V_{GS} = 4.5 \text{ V}$, $I_D = 8.3 \text{ A}$
- High Performance Technology for Extremely Low R_{DS(on)}
- Termination is Lead-Free
- RoHS Compliant

Applications

- High Side in DC-DC Buck Converters
- Notebook Battery Power Management
- Load Switch in Notebook

WDFN8 3.3x3.3, 0.65P CASE 511DR

MARKING DIAGRAM

ZXYKK FDMC 8882

Z = Assembly Plant Code
XY = Date Code (Year &Week)
KK = Lot Traceability Code
FDMC8882 = Specific Device Code

ORDERING INFORMATION

Device	Package	Shipping [†]
FDMC8882	WDFN8 (Pb-Free)	3000 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

$\textbf{MOSFET MAXIMUM RATINGS} \ (T_{A} = 25^{\circ}C \ unless \ otherwise \ noted)$

Symbol	Parameter			Ratings	Unit
V_{DS}	Drain to Source Voltage			30	V
V_{GS}	Gate to Source Voltage			±20	V
I _D	Drain Current	Continuous (Package Limited)	T _C = 25°C	16	Α
		Continuous (Silicon Limited)	T _C = 25°C	34	
		Continuous	T _A = 25°C (Note 1a)	10.5	Α
		Pulsed	-	40	
P_{D}	Power Dissipation		T _C = 25°C	18	W
	Power Dissipation		T _A = 25°C (Note 1a)	2.3	
T _J , T _{STG}	Operating and Storage Junction Temperature Range		-55 to +150	°C	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS

Symbol	Parameter	Ratings	Unit
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case	6.6	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient (Note 1a)	53	

$\textbf{ELECTRICAL CHARACTERISTICS} \ (T_J = 25^{\circ}\text{C unless otherwise noted})$

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit	
OFF CHARACTERISTICS							
BV _{DSS}	Drain-to-Source Breakdown Voltage	$I_D=250~\mu\text{A},~V_{GS}=0~\text{V}$	30	_	_	V	
$\frac{\Delta BV_{DSS}}{\Delta T_{J}}$	Breakdown Voltage Temperature Coefficient	I _D = 250 μA, referenced to 25°C	_	25	-	mV/°C	
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 24 V, V _{GS} = 0 V	-	_	1	μΑ	
		V_{DS} = 24 V, V_{GS} = 0 V, T_J = 125 °C	-	-	250		
I _{GSS}	Gate-to-Source Leakage Current	V _{GS} = ±20 V, V _{DS} = 0 V	-	_	±100	nA	
ON CHARAC	CTERISTICS						
V _{GS(th)}	Gate-to-Source Threshold Voltage	$V_{GS} = V_{DS}, I_D = 250 \mu A$	1.2	1.9	2.5	V	
$\frac{\Delta V_{GS(th)}}{\Delta T_{J}}$	Gate-to-Source Threshold Voltage Temperature Coefficient	I _D = 250 μA, referenced to 25°C	_	-5	-	mV/°C	
R _{DS(on)}	Static Drain-to-Source	V _{GS} = 10 V, I _D = 10.5 A	-	12.4	14.3	mΩ	
	On Resistance	V _{GS} = 4.5 V, I _D = 8.3 A	-	16.0	22.5	1	
		V _{GS} = 10 V, I _D = 10.5 A, T _J = 125°C	-	17.4	_		
9FS	Forward Transconductance	V _{DS} = 5 V, I _D = 10.5 A	-	33	_	S	
DYNAMIC C	DYNAMIC CHARACTERISTICS						
C _{iss}	Input Capacitance	V _{DS} = 15 V, V _{GS} = 0 V, f = 1 MHz	_	710	945	pF	
C _{oss}	Output Capacitance		-	140	185	pF	
C _{rss}	Reverse Transfer Capacitance		-	90	135	pF	
Rg	Gate Resistance		-	1.0	_	Ω	

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
WITCHING	CHARACTERISTICS		•	•	•	•
t _{d(on)}	Turn-On Delay Time	$V_{DD} = 15 \text{ V}, I_D = 10.5 \text{ A}, V_{GS} = 10 \text{ V},$	-	7	14	ns
t _r	Rise Time	$ R_{GEN} = 6 \Omega$	-	3	10	1
t _{d(off)}	Turn-Off Delay Time	7	-	17	30	1
t _f	Fall Time	1	-	2	10	1
Q _{g(tot)}	Total Gate Charge	V _{GS} = 0 V to 10 V, V _{DD} = 15 V, I _D = 10.5 A	-	14	20	nC
	Total Gate Charge	V _{GS} = 0 V to 4.5 V, V _{DD} = 15 V, I _D = 10.5 A	-	7	10	1
Q_{gs}	Gate-to-Source Charge	V _{DD} = 15 V, I _D = 10.5 A	-	2.3	_	1
Q_{gd}	Gate-to-Drain "Miller" Charge	V _{DD} = 15 V, I _D = 10.5 A	-	2.8	_	1
RAIN-SOL	JRCE DIODE CHARACTERISTICS					
V_{SD}	Source-to-Drain Diode Forward Voltage	V _{GS} = 0 V, I _S = 10.5 A (Note 2)	-	0.88	1.2	V
		V _{GS} = 0 V, I _S = 1.9 A (Note 2)	-	0.76	1.2	1
t _{rr}	Reverse Recovery Time	I _F = 10.5 A, di/dt = 100 A/μs	-	16	28	ns

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

NOTES

 Q_{rr}

1. $R_{\theta JA}$ is determined with the device mounted on a 1 in² pad 2 oz copper pad on a 1.5 \times 1.5 in. board of FR-4 material. $R_{\theta JC}$ is guaranteed by design while $R_{\theta CA}$ is determined by the user's board design.

a) 53°C/W when mounted on a 1 in² pad of 2 oz copper

b) 125°C/W when mounted on a minimum pad of 2 oz copper nC

2. Pulse Test: Pulse Width < 300 μ s, Duty cycle < 2.0%.

Reverse Recovery Charge

TYPICAL CHARACTERISTICS

 $(T_J = 25^{\circ}C \text{ unless otherwise noted})$

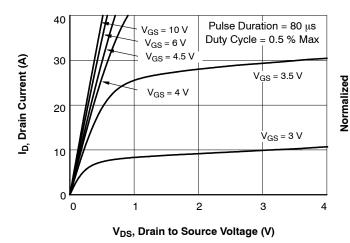


Figure 1. On-Region Characteristics

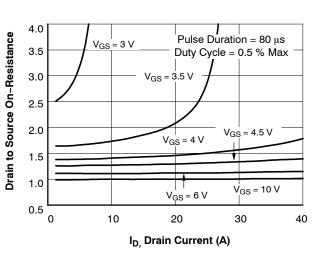


Figure 2. Normalized On–Resistance vs.
Drain Current and Gate Voltage

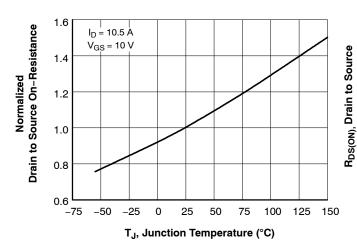


Figure 3. Normalized On-Resistance vs. Junction Temperature

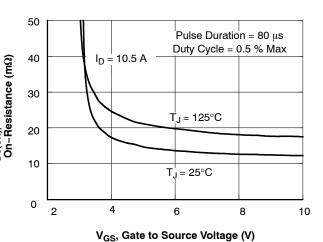


Figure 4. On-Resistance vs.

Gate to Source Voltage

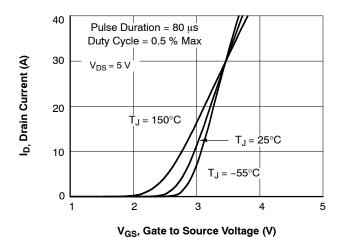
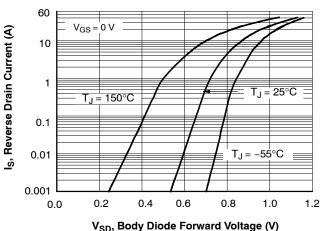



Figure 5. Transfer Characteristics

v_{SD}, body blode i ofward voltage (v)

Figure 6. Source to Drain Diode Forward Voltage vs. Source Current

TYPICAL CHARACTERISTICS (continued)

 $(T_J = 25^{\circ}C \text{ unless otherwise noted})$

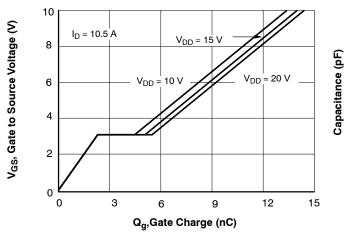


Figure 7. Gate Charge Characteristics

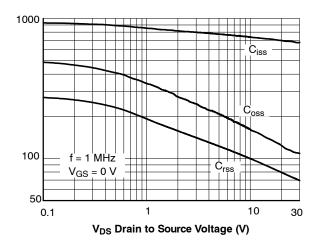


Figure 8. Capacitance vs Drain to Source Voltage

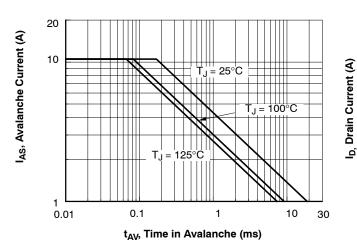


Figure 9. Unclamped Inductive Switching Capability

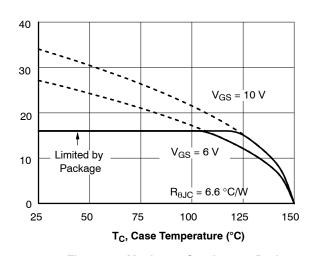


Figure 10. Maximum Continuous Drain Current vs. Case Temperature

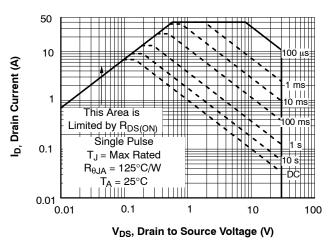


Figure 11. Forward Bias Safe Operating Area

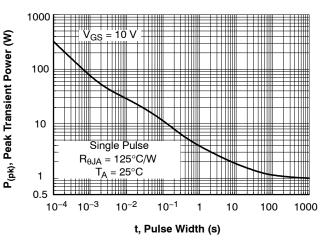


Figure 12. Single Pulse Maximum Power Dissipation

TYPICAL CHARACTERISTICS (continued)

 $(T_J = 25^{\circ}C \text{ unless otherwise noted})$

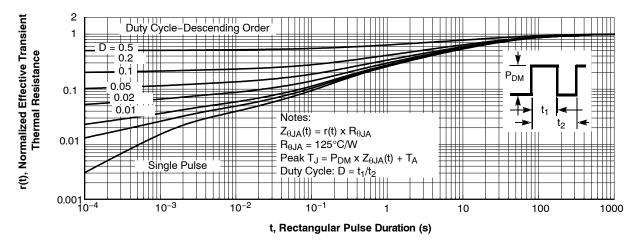
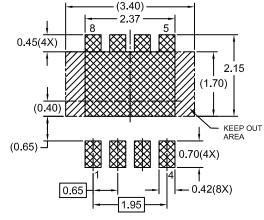


Figure 13. Transient Thermal Response Curve

POWERTRENCH is a registered trademark of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries.

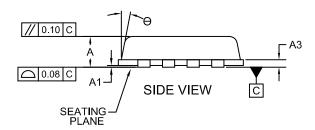
IDENT

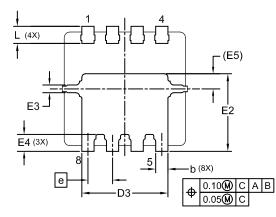
PACKAGE DIMENSIONS


WDFN8 3.3x3.3, 0.65P CASE 511DR **ISSUE B**

DATE 02 FEB 2022

- A. DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 2009.
- B. SEATING PLANE IS DEFINED BY TERMINAL TIPS ONLY
- C. BODY DIMENSIONS DO NOT INCLUDE MOLD FLASH PROTRUSIONS NOR GATE BURRS. MOLD FLASH PROTRUSION OR GATE BURR DOES NOT EXCEED 0.150MM.


DIM	MILLIMETERS				
DIM	MIN	NOM	MAX		
Α	0.70	0.75	0.80		
A1	0.00	ı	0.05		
А3	0.15	0.20	0.25		
b	0.27	0.32	0.37		
D	3.20	3.30	3.40		
D1	3.10	3.20	3.30		
D3	2.17	2.27	2.37		
Е	3.20	3.30	3.40		
E1	2.90	3.00	3.10		
E2	1.95	2.05	2.15		
E3	0.15	0.20	0.25		
E4	0.30	0.40	0.50		
E5	0.40 REF				
е	0.65 BSC				
L	0.30	0.40	0.50		
θ	0°	-	12°		


RECOMMENDED LAND PATTERN

*FOR ADDITIONAL INFORMATION ON OUR PB-FREE STRATEGY AND SOLDERING DETAILS, PLEASE DOWNLOAD THE ON SEMICONDUCTOR SOLDERING AND MOUNTING TECHNIQUES REFERENCE MANUAL, SOLDERRM/D.

Α 0.10 C 2X В PIN1 □ 0.10 C

TOP VIEW

BOTTOM VIEW

GENERIC MARKING DIAGRAM*

XXXX AYWW= XXXX = Specific Device Code = Assembly Location

= Year = Work Week

= Pb-Free Package

(Note: Microdot may be in either location)

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "=", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98AON13650G	Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	WDFN8 3.3x3.3, 0.65P		PAGE 1 OF 1	

onsemi and Onsemi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries, onsemi reserves the right to make changes without further notice to any products herein. **onsemi** makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales