N-Channel POWERTRENCH[®] MOSFET 30 V, 16.5 A, 14 m Ω

This N-Channel MOSFET is a rugged gate version of ON Semiconductor's advanced PowerTrench process. It has been optimized for power management applications.

> T_C = 25°C (Package limited)

> > $T_{\rm C} = 25^{\circ}{\rm C}$

(Silicon limited)

T_A = 25°C (Figure 1)

Pulsed

 $T_{\rm C} = 25^{\circ}{\rm C}$

T_A = 25°C

(Figure 1)

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be

Features

- $R_{DS(on)} = 14 \text{ m}\Omega \text{ (Max.)} @ V_{GS} = 10 \text{ V}, I_D = 9.6 \text{ A}$
- $R_{DS(on)} = 17 \text{ m}\Omega \text{ (Max.)} @ V_{GS} = 4.5 \text{ V}, I_D = 8.7 \text{ A}$
- Low Profile 0.8 mm Max in MLP 3.3 x 3.3
- These Devices are Pb-Free and are RoHS Compliant

Application

• DC – DC Conversion

Drain-to-Source Voltage

Gate-to-Source Voltage

Continuous Drain Current

Drain Current

Range

(Figure 1)

Power Dissipation

MAXIMUM RATINGS (T_A = 25°C unless otherwise noted)

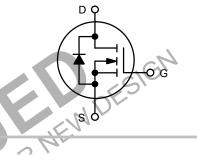
Parameter

Operating and Storage Junction Temperature

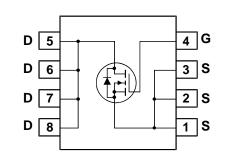
Parameter

THERMAL CHARACTERISTICS

Thermal Resistance, Junction-to-Case


Thermal Resistance, Junction-to-Ambient

assumed, damage may occur and reliability may be affected.



ON Semiconductor®

www.onsemi.com

ORDERING INFORMATION

See detailed ordering, marking and shipping information on page 1 of this data sheet.

Part Number	Top Mark	Package	kage Reel Size		Quantity	
FDMC8878	FDMC8878	MLP 3.3 x 3.3	13″	12 mm	3000 units	

Unit

V

V

A

А

W

°C

Unit

°C/W

Value 30

±20

16.5

38

9.6

60

31

2.1

-55 to

+150

Value

4

60

Symbol

VDS

Vgs

ΙD

I٦

PD

TJ, TSTG

Symbol

 $R_{\theta JC}$

 $R_{\theta JA}$

Semiconductor Components Industries, LLC, 2012 June, 2024 – Rev. 6

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified)

Symbol	Parameter	Test Condition	Min	Тур	Max	Unit			
OFF CHARA	OFF CHARACTERISTICS								
BV _{DSS}	Drain-to-Source Breakdown Voltage	$I_D = 250 \ \mu\text{A}, \ V_{GS} = 0 \ \text{V}$	30	-	-	V			
$\Delta \text{BV}_{\text{DSS}} / \Delta \text{T}_{\text{J}}$	Breakdown Voltage Temperature Coefficient	I_D = 250 µA, Referenced to 25°C	-	20	-	mV/°C			
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 24 \text{ V}, V_{GS} = 0 \text{ V}$	-	-	1	μΑ			
		$V_{DS} = 24$ V, $V_{GS} = 0$ V, $T_J = 125^{\circ}C$	-	-	100				
I _{GSS}	Gate-to-Source Leakage Current	V_{GS} = ±20 V, V_{DS} = 0 V	-	-	±100	nA			

ON CHARACTERISTICS

V _{GS(th)}	Gate-to-Source Breakdown Voltage	$I_D = 250 \ \mu\text{A}, \ V_{GS} = V_{DS}$	1	1.7	3	V
$\Delta BV_{DSS}/\Delta T_J$	Gate-to-Source Threshold Voltage Temperature Coefficient	$I_D = 250 \ \mu A$, Referenced to $25^{\circ}C$	-	-5.7	-	mV/°C
R _{DS(on)}	Drain-to-Source On Resistance	V _{GS} = 10 V, I _D = 9.6 A		9.6	14.0	mΩ
		V_{GS} = 4.5 V, I _D = 8.7 A	-	12.1	17.0	
		V_{GS} = 10 V, I _D = 9.6 A, T _J = 125°C	-	13.5	20.0	
9fs	Forward Transconductance	$V_{DS} = 5 \text{ V}, \text{ I}_{D} = 9.6 \text{ A}$		35	-	S
DYNAMIC CH	DYNAMIC CHARACTERISTICS					

DYNAMIC CHARACTERISTICS

C _{iss}	Input Capacitance	$V_{DS} = 15 \text{ V}, \text{ V}_{GS} = 0 \text{ V}, \text{ f} = 1 \text{ MHz}$	1000	1230	pF		
C _{oss}	Output Capacitance	OF CEL	183	255	pF		
C _{rss}	Reverse Transfer Capacitance	DEL ONS A	118	180	pF		
Rg	Reverse Transfer Capacitance	f≡1 MHz –	1.1	-	Ω		
SWITCHING	SWITCHING CHARACTERISTICS						

t _{d(on)}	Turn-On Delay Time $V_{DD} = 15 \text{ V}, \text{ I}_D = 9.6 \text{ A}, \text{ V}_{GS} = 10 \text{ V}, \text{ R}_{GEN} = 6 \Omega$	-	8	16	ns
t _r	Rise Time $V_{GS} = 10 V, R_{GEN} = 6 \Omega$	_	4	10	
t _{d(off)}	Turn-Off Delay Time	_	20	36	
t _f	Fall Time	_	3	10	
Q _{g(tot)}	Total Gate Charge $V_{GS} = 10 \text{ V}, V_{DD} = 15 \text{ V}, I_D = 9.6 \text{ A}$	-	18	26	nC
Q _{gs}	Gate-to-Source Gate Charge	-	2.8	1	
Q _{gd}	Gate-to-Drain "Miller" Charge	-	3.9	-	

DRAIN-SOURCE DIODE CHARACTERISTICS

V _{SD}	Source-to-Drain Diode Forward Voltage	$V_{GS} = 0 \text{ V}, \text{ I}_{S} = 9.6 \text{ A} \text{ (Note 2)}$	-	0.8	1.2	V
t _{rr}	Reverse Recovery Time	I _F = 9.6 A, di/dt = 100 A/μs	-	23	35	ns
Q _{rr}	Reverse Recovery Charge	$a_{\mu}a_{\tau} = 100 A/\mu s$	-	14	21	nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
R_{θJA} is determined with the device mounted on a 1 in² pad 2 oz copper pad on a 1.5 x 1.5 in. board of FR-4 material. R_{θJC} is guaranteed by design while R_{θCA} is determined by the user's board design.

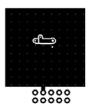


Figure 1.

a. 60°C/W when mounted on a 1 in² pad of 2 oz copper

b. 135°C/W when mounted on a minimum pad of 2 oz copper

Figure 2.

2. Pulse Test: Pulse Width < 300 μ s, Duty cycle < 2.0%.

TYPICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise noted)

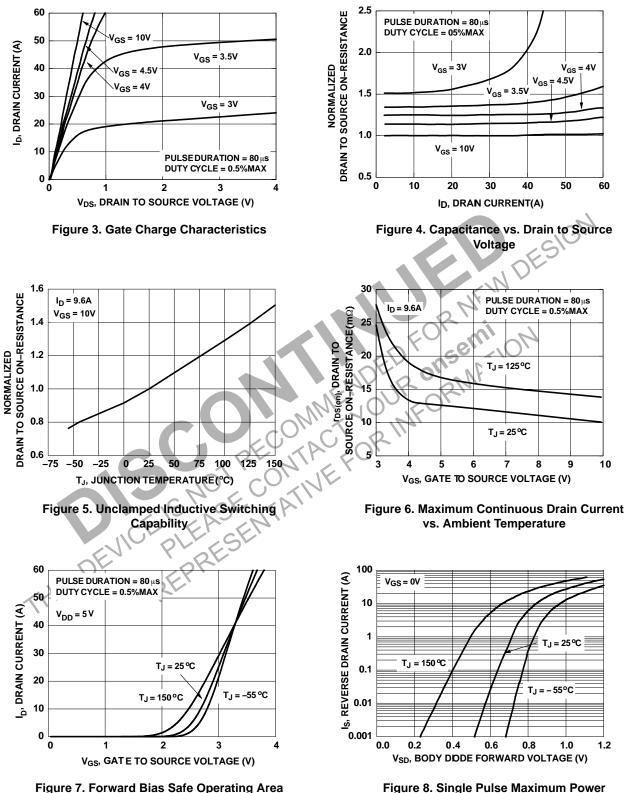


Figure 8. Single Pulse Maximum Power Dissipation

TYPICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

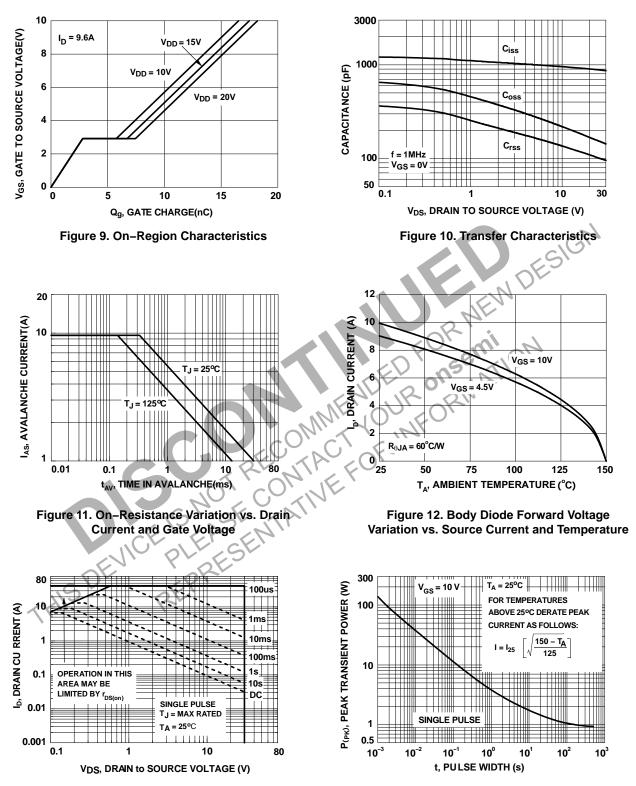
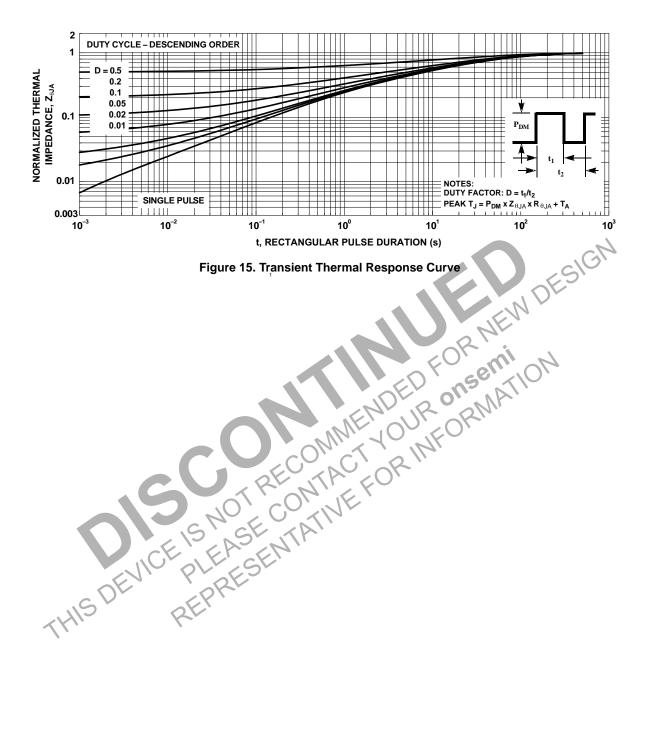
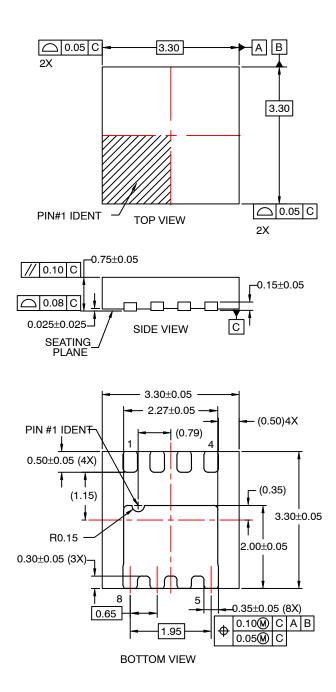
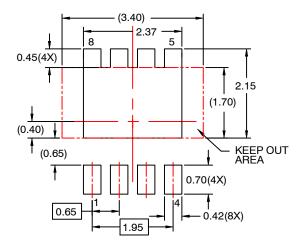



Figure 13. Capacitance Characteristics

Figure 14. Gate Charge Characteristics




POWERTRENCH is a registered trademark of Semiconductor Components Industries, LLC.

WDFN8 3.3x3.3, 0.65P CASE 511DH ISSUE O

DATE 31 JUL 2016

RECOMMENDED LAND PATTERN

NOTES:

- A. DOES NOT CONFORM TO JEDEC REGISTRATION MO-229
- B. DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 2009.
- D. LAND PATTERN RECOMMENDATION IS EXISTING INDUSTRY LAND PATTERN.

DOCUMENT NUMBER:	98AON13625G	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	WDFN8 3.3X3.3, 0.65P		PAGE 1 OF 1		

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights of others.

© Semiconductor Components Industries, LLC, 2016

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>