onsemi

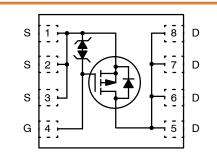
MOSFET – P-Channel, POWERTRENCH[®]

-30 V, -20 A, 14.4 $m\Omega$

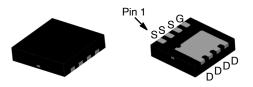
FDMC6675BZ

Description

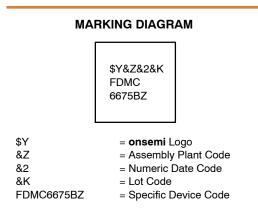
The FDMC6675BZ has been designed to minimize losses in load switch applications. Advancements in both silicon and package technologies have been combined to offer the lowest $R_{DS(on)}$ and ESD protection.


Features

- Max $R_{DS(on)} = 14.4 \text{ m}\Omega$ at $V_{GS} = -10 \text{ V}$, $I_D = -9.5 \text{ A}$
- Max $R_{DS(on)} = 27.0 \text{ m}\Omega$ at $V_{GS} = -4.5 \text{ V}$, $I_D = -6.9 \text{ A}$
- HBM ESD Protection Level of 8 kV Typical (Note 3)
- Extended V_{GSS} Range (-25 V) for Battery Applications
- High Performance Trench Technology for Extremely Low R_{DS(on)}
- High Power and Current Handling Capability
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant


Typical Applications

- Load Switch in Notebook and Server
- Notebook Battery Pack Power Management


P-Channel

Тор

Bottom

WDFN8 3.3x3.3, 0.65P CASE 511DR

ORDERING INFORMATION

See detailed ordering and shipping information on page 2 of this data sheet.

MOSFET MAXIMUM RATINGS ($T_A = 25^{\circ}C$, Unless otherwise specified)

Symbol	Parameter		Ratings	Unit	
V _{DS}	Drain to Source Voltage			-30	V
V _{GS}	Gate to Source Voltage			±25	V
Ι _D	Drain Current -Continuous (Package Limited)	$T_{C} = 25^{\circ}C$		-20	A
	-Continuous (Silicon Limited)	$T_{C} = 25^{\circ}C$		-40	
	-Continuous	$T_A = 25^{\circ}C$	(Note 1a)	-9.5	
	-Pulsed			-32	
PD	Power Dissipation T _C =	= 25°C		36	W
	Power Dissipation T _A =	= 25°C (Note 1a))	2.3]
T _J , T _{STG}	Operating and Storage Junction Temperature Rang	e		-55 to +150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS

Symbol	Parameter	Ratings	Unit
$R_{\theta JC}$	Thermal Resistance, Junction to Case	3.4	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient (Note 1a)	53	

PACKAGE MARKING AND ORDERING INFORMATION

Device Marking	Device	Package	Reel Size	Tape Width	Shipping (Qty / Packing) [†]
FDMC6675BZ	FDMC6675BZ	WDFN8 3.3x3.3, 0.65P (MLP) (Pb-Free/Halogen Free)	13″	12 mm	3000 / Tape & Reel

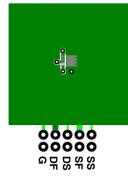
+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

ELECTRICAL CHARACTERISTICS (T_J = $25^{\circ}C$ unless otherwise noted)

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
OFF CHARA	CTERISTICS					
BV _{DSS}	Drain to Source Breakdown Volt- age	$I_D = -250 \ \mu A, \ V_{GS} = 0 \ V$	-30	-	-	V
$\frac{\Delta \text{BV}_{\text{DSS}}}{\Delta \text{T}_{\text{J}}}$	Breakdown Voltage Temperature Coefficient	$I_D = -250 \ \mu A$, referenced to $25^{\circ}C$	-	-20	-	mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	V_{DS} = -24 V, V_{GS} = 0 V V_{DS} = -24 V, V_{GS} = 0 V, T_{J} = 125°C	-		-1 -100	μΑ
I _{GSS}	Gate to Source Leakage Current	$V_{GS}=\pm 25~V,~V_{DS}=0~V$	-	-	±10	μΑ

ON CHARACTERISTICS

V _{GS(th)}	Gate to Source Threshold Voltage	V_{GS} = V_{DS} , I_D = -250 μ A	-1.0	-1.9	-3.0	V
$\frac{\Delta {\rm V}_{\rm GS(th)}}{\Delta {\rm T}_{\rm J}}$	Gate to Source Threshold Voltage Temperature Coefficient	$I_D = -250 \ \mu A$, referenced to $25^{\circ}C$	-	6.0	-	mV/°C
R _{DS(on)}	On Resistance	V_{GS} = -10 V, I _D = -9.5 A	-	10.7	14.4	mΩ
		$V_{GS} = -4.5 \text{ V}, \text{ I}_{D} = -6.9 \text{ A}$	-	17.4	27.0	
		V_{GS} = -10 V, I_D = -9.5 A, T_J = 125°C	_	15.2	20.5	
9 _{FS}	Forward Transconductance	$V_{DD} = -5 \text{ V}, \text{ I}_{D} = -9.5 \text{ A}$	_	28	_	S


ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise noted) (continued)

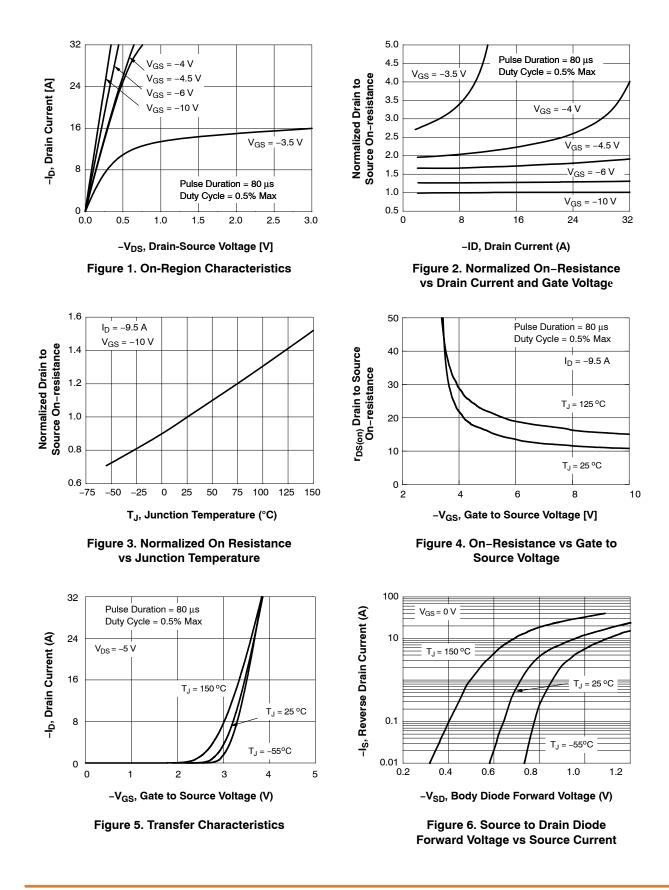
Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
YNAMIC C	HARACTERISTICS		-			
C _{iss}	Input Capacitance	$V_{DS} = -15$ V, $V_{GS} = 0$ V, f = 1 MHz	-	2154	2865	pF
C _{oss}	Output Capacitance		-	392	525	pF
C _{rss}	Reverse Transfer Capacitance		_	349	525	pF
WITCHING	CHARACTERISTICS		-			
t _{d(on)}	Turn-On Delay Time	V_{DD} = –15 V, I_D = –9.5 A, V_{GS} = –10 V, R_{GEN} = 6 Ω	-	11	20	ns
t _r	Rise Time		_	10	20	
t _{d(off)}	Turn-off Delay Time		_	44	71	
t _f	Fall Time		_	26	42	
Q _{g(TOT)}	Total Gate Charge	V_{GS} = 0V to -10 V, V_{DD} = -15 V, I_{D} = -9.5 A	-	46	65	nC
	Total Gate Charge	V_{GS} = 0V to -5 V, V_{DD} = -15 V, I_{D} = -9.5 A	-	26	37	nC
Q _{gs}	Gate to Source Charge	V _{DD} = -15 V, I _D = -9.5 A	-	6.4	-	nC
Q _{gd}	Gate to Drain "Miller" Charge	$V_{DD} = -15 \text{ V}, \text{ I}_{D} = -9.5 \text{ A}$	-	13	-	nC
RAIN-SOL	JRCE DIODE CHARACTERISTICS					
V_{SD}	Source to Drain Diode Forward Voltage	$V_{GS} = 0 \text{ V}, \text{ I}_{S} = -9.5 \text{ A} \text{ (Note 2)}$	-	-0.89	-1.3	V
		V _{GS} = 0 V, I _S = -1.6 A (Note 2)	-	-0.73	-1.2	V
t _{rr}	Reverse Recovery Time	I _F = -9.5 A, di/dt = 100 A/µs	-	24	38	ns
Q _{rr}	Reverse Recovery Charge	1	-	15	27	nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

NOTES:

1. $R_{\theta JA}$ is determined with the device mounted on a 1 in² pad 2 oz copper pad on a 1.5 × 1.5 in. board of FR-4 material. $R_{\theta JC}$ is guaranteed by design while $R_{\theta CA}$ determined by the user's board design.

a) 53° C/W when mounted on a 1 in² pad of 2 oz copper


b) 125°C/W when mounted on a minimum pad

2. Pulse Test: Pulse Width < 300 μ s, Duty cycle < 2.0%.

3. The diode connected between the gate and source serves only as protection against ESD. No gate overvoltage rating is implied.

TYPICAL CHARACTERISTICS

(T_J = 25 °C UNLESS OTHERWISE NOTED)

TYPICAL PERFORMANCE CHARACTERISTICS (CONTINUED)

(T_J = 25 °C UNLESS OTHERWISE NOTED)



Figure 7. Gate Charge Characteristics

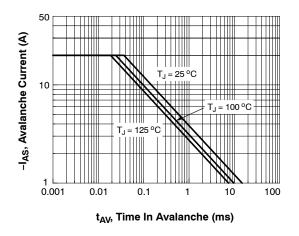


Figure 9. Unclamped Inductive Switching Capability

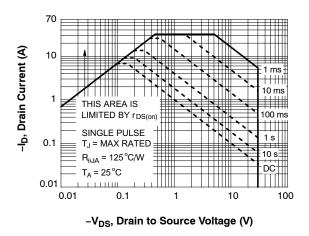


Figure 11. Forward Bias Safe Operating Area

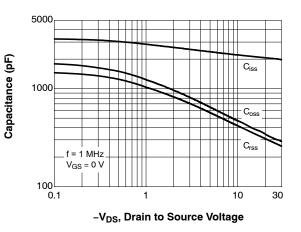


Figure 8. Capacitance vs Drain to Source Voltage

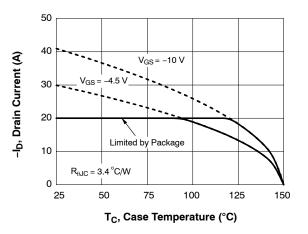
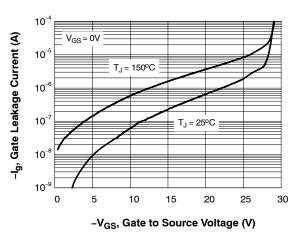
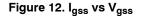




Figure 10. Maximum Continuous Drain Current vs Case Temperature

(T_J = 25 °C UNLESS OTHERWISE NOTED)

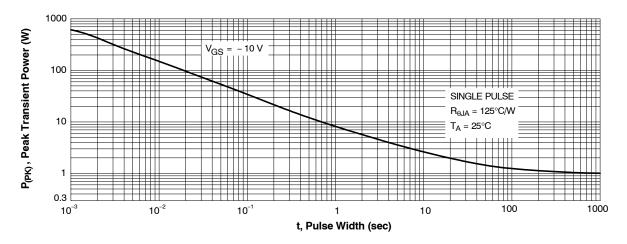


Figure 13. Single Pulse Maximum Power Dissipation

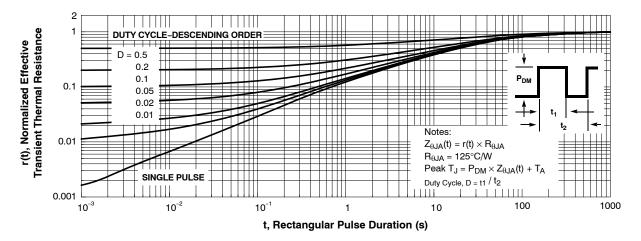
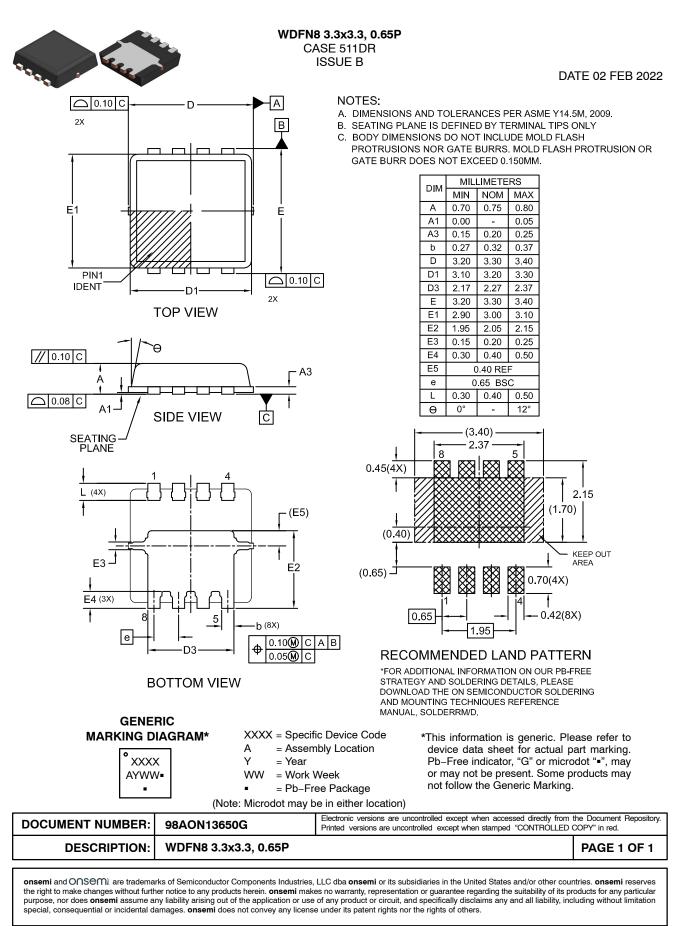



Figure 14. Junction-to-Ambient Transient Thermal Response Curve

POWERTRENCH is registered trademark of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries.

onsemi

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>