

MOSFET – Single, N-Channel, POWERTRENCH[®], 2.5 V Specified

30 V, 5.0 A, 40 m Ω

FDMA430NZ

General Description

This Single N-Channel MOSFET has been designed using **onsemi**'s advanced POWERTRENCH process to optimize the $R_{DS(on)}$ @ $V_{GS} = 2.5$ V on special MicroFETTM leadframe.

Features

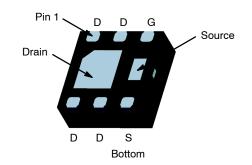
- $R_{DS(on)} = 40 \text{ m}\Omega$ at $V_{GS} = 4.5 \text{ V}$, $I_D = 5.0 \text{ A}$
- $R_{DS(on)} = 50 \text{ m}\Omega$ at $V_{GS} = 2.5 \text{ V}$, $I_D = 4.5 \text{ A}$
- Low Profile 0.8 mm Maximum in the New Package MicroFET 2x2 mm
- HBM ESD Protection Level > 2.5 kV Typical (Note 3)
- Free from Halogenated Compounds and Antimony Oxides
- This Device is Pb-Free, Halide Free and is RoHS Compliant

Applications

• Li-lon Battery Pack

ABSOLUTE MAXIMUM RATINGS (T_A = 25°C, unless otherwise noted)

Symbol	Parameter	Ratings	Unit
V _{DSS}	Drain-Source Voltage	30	V
V _{GSS}	Gate-Source Voltage	±12	V
I _D	Drain Current - Continuous (Note 1a) - Pulsed	5.0 20	Α
P _D	Power Dissipation (Steady State) – (Note 1a) – (Note 1b)	2.4 0.9	W
T _J , T _{STG}	Operating and Storage Junction Temperature Range	-55 to +150	°C


Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS (T_A = 25°C, unless otherwise noted)

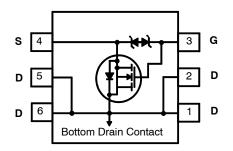
Symbol	Parameter	Ratings	Unit
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient (Note 1a)	52	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient (Note 1b)	145	

1

V _{DS}	R _{DS(on)} MAX	I _D MAX
30 V	40 mΩ @ 4.5 V	5.0 A
	50 mΩ @ 2.5 V	

WDFN6 2x2, 0.65P (MicroFET 2x2) CASE 511CZ

MARKING DIAGRAM


&Z = Assembly Plant Code

&2 = 2-Digit Date Code

&K = 2-Digits Lot Run Traceability Code

430 = Specific Device Code

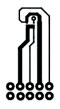
PIN ASSIGNMENT

ORDERING INFORMATION

Device	Package	Shipping [†]
FDMA430NZ	WDFN6 (Pb–Free, Halide Free)	3000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

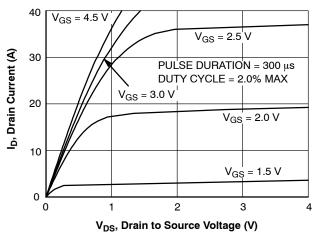
ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)


Symbol	Parameter	Test Condition	Min	Тур	Max	Unit
OFF CHAR	ACTERISTICS	•	-	-	-	-
BV _{DSS}	Drain-Source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0 V$	30	_	-	V
$\frac{\Delta BV_{DSS}}{\Delta T_{J}}$	Breakdown Voltage Temperature Coefficient	I_D = 250 μ A, referenced to 25°C	-	25.2	_	mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 24 V, V _{GS} = 0 V	-	-	1	μΑ
I _{GSS}	Gate-Body Leakage	$V_{GS} = \pm 12 \text{ V}, V_{DS} = 0 \text{ V}$	-	-	±10	μΑ
ON CHARA	CTERISTICS (Note 2)					
V _{GS(th)}	Gate Threshold Voltage	$V_{GS} = V_{DS}, I_D = 250 \mu A$	0.6	0.81	1.5	V
$\frac{\Delta V_{GS(th)}}{\Delta T_{J}}$	Gate Threshold Voltage Temperature Coefficient	I_D = 250 μ A, referenced to 25°C	-	-3.2	_	mV/°C
R _{DS(on)}	Static Drain-Source On Resistance	V _{GS} = 4.5 V, I _D = 5.0 A	-	23.6	40	mΩ
. ,		V _{GS} = 4.0 V, I _D = 5.0 A	-	23.9	41	
		V _{GS} = 3.1 V, I _D = 4.5 A	-	25.4	43	
		V _{GS} = 2.5 V, I _D = 4.5 A	-	27.6	50	
		V _{GS} = 4.5 V, I _D = 5.0 A, T _J = 150°C	-	37.0	61	
9FS	Forward Transconductance	V _{DS} = 5 V, I _D = 5.0 A	-	25.6	-	S
DYNAMIC C	CHARACTERISTICS		•	•		
C _{iss}	Input Capacitance	V _{DS} = 10 V, V _{GS} = 0 V, f = 1.0 MHz	-	600	800	pF
C _{oss}	Output Capacitance	7	-	110	150	pF
C _{rss}	Reverse Transfer Capacitance	7	-	75	115	pF
R _G	Gate Resistance	f = 1.0 MHz	-	3.5	-	Ω
SWITCHING	G CHARACTERISTICS (Note 2)	•			•	
t _{d(on)}	Turn-On Delay Time	V _{DD} = 10 V, I _D = 1 A,	-	8.3	17	ns
t _r	Turn-On Rise Time	V_{GS} = 4.5 V, R_{GEN} = 6 Ω	-	7.1	15	ns
t _{d(off)}	Turn-Off Delay Time	7	-	18.1	37	ns
t _f	Turn-Off Fall Time	7	-	6.0	12	ns
Qg	Total Gate Charge	V _{DS} = 10 V, I _D = 5.0 A, V _{GS} = 4.5 V	-	7.3	11	nC
Q _{gs}	Gate-Source Charge		-	0.8	2	nC
Q _{gd}	Gate-Drain Charge		-	1.9	3	nC
	URCE DIODE CHARACTERISTICS AND M	AXIMUM RATINGS	-	•	•	
I _S	Maximum Continuous Drain-Source Diod	e Forward Current	-	-	2.0	Α
V _{SD}	Drain-Source Diode Forward Voltage	V _{GS} = 0 V, I _S = 2.0 A	_	0.69	1.2	V
t _{rr}	Diode Reverse Recovery Time	I _F = 5.0 A, di/dt = 100 A/μs	_	-	17	ns
Q _{rr}	Diode Reverse Recovery Charge		_	-	5	nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

R_{0,1A} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins.

a. 52°C/W when mounted on a 1 in² pad of 2 oz copper


b. 145°C/W when mounted on a minimum pad of 2 oz copper

- 2. Pulse Test: Pulse Width < 300 μ s, Duty cycle < 2.0%.
 3. The diode connected between the gate and source serves only as protection against ESD. No gate overvoltage rating is implied.

TYPICAL CHARACTERISTICS

(T_J = 25°C unless otherwise noted)

1.8

1.7 Drain to Source On-Resistance 1.6 V_{GS} = 2.0 V 1.5 2.5 V Vormalized 1.4 3.0 V 1.3 3.5 1.2 1.1 1.0 0.9 8.0 5 10 15 20 25 30 35 40 I_D, Drain Current (A)

Figure 1. On-Region Characteristics

Figure 2. On-Resistance vs. Drain Current and Gate Voltage

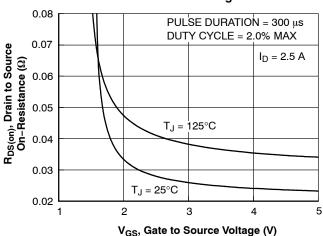
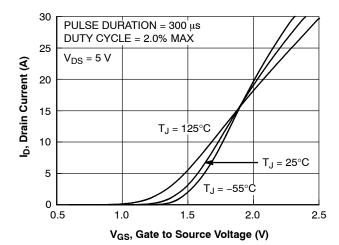



Figure 3. Normalized On–Resistance vs. Junction Temperature

Figure 4. On-Resistance vs. Gate to Source Voltage

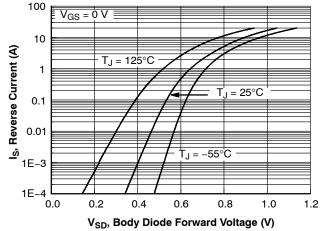


Figure 5. Transfer Characteristics

Figure 6. Source to Drain Diode Forward Voltage vs. Source Current

TYPICAL CHARACTERISTICS (continued)

 $(T_J = 25^{\circ}C \text{ unless otherwise noted})$

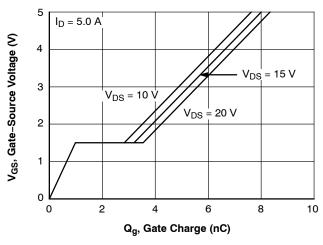


Figure 7. Gate Charge Characteristics

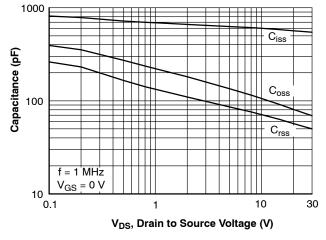


Figure 8. Capacitance vs. Drain to Source Voltage

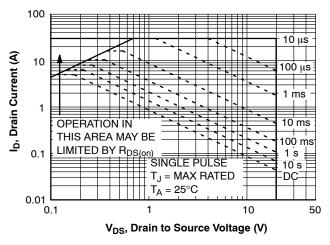


Figure 9. Safe Operating Area

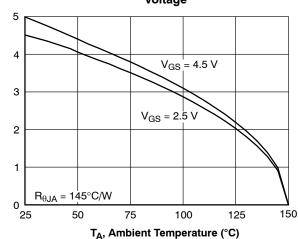
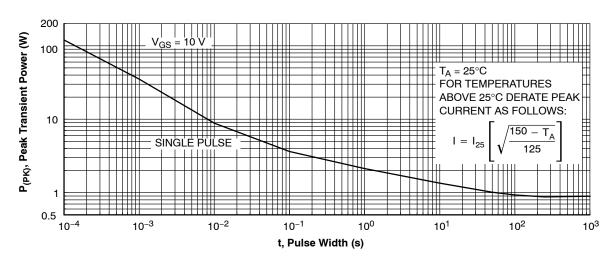



Figure 10. Maximum Continuous Drain Current vs. Ambient Temperature

ID, Drain Current (A)

Figure 11. Single Pulse Maximum Power Dissipation

TYPICAL CHARACTERISTICS (continued)

 $(T_J = 25^{\circ}C \text{ unless otherwise noted})$

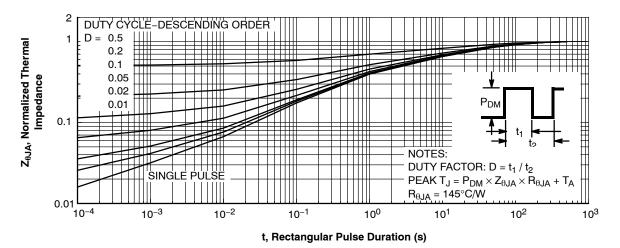
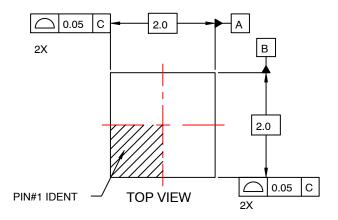
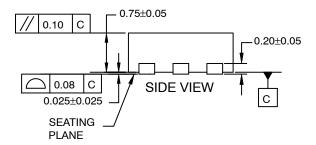
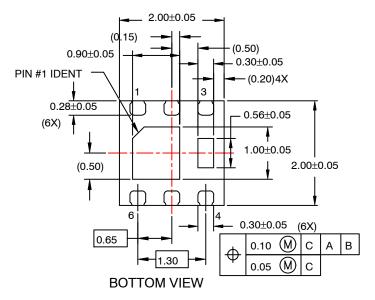
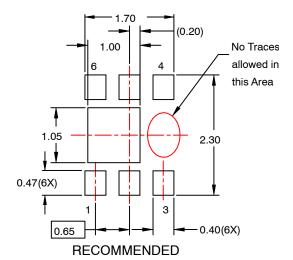


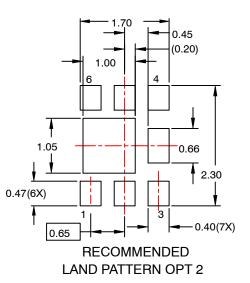
Figure 12. Transient Thermal Response Curve


POWERTRENCH is a registered trademark of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries.


MicroFET is a trademark of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries.




WDFN6 2x2, 0.65P CASE 511CZ ISSUE O


DATE 31 JUL 2016

LAND PATTERN OPT 1

NOTES:

- A. PACKAGE DOES NOT FULLY CONFORM TO JEDEC MO-229 REGISTRATION
- B. DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 2009.
- D. LAND PATTERN RECOMMENDATION IS EXISTING INDUSTRY LAND PATTERN.

DOCUMENT NUMBER	98AON13614G	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION	WDFN6 2X2, 0.65P		PAGE 1 OF 1	

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales