

MOSFET - N-Channel, POWERTRENCH®

100 V, 4.4 A, 60 m Ω

FDM3622

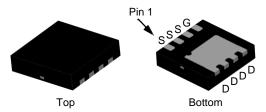
General Description

This N-Channel MOSFET is produced using **onsemi**'s advanced POWERTRENCH process that has been especially tailored to minimize the on-state resistance and yet maintain low gate charge for superior switching performance.

Features

- Max $r_{DS(on)} = 60 \text{ m}\Omega$ at $V_{GS} = 10 \text{ V}$, $I_D = 4.4 \text{ A}$
- Max $r_{DS(on)} = 80 \text{ m}\Omega$ at $V_{GS} = 6.0 \text{ V}$, $I_D = 3.8 \text{ A}$
- Low Miller Charge
- Low QRR Body Diode
- Optimized efficiency at high frequencies
- UIS Capability (Single Pulse and Repetitive Pulse)
- This Device is Pb-Free, Halide Free and is RoHS Compliant

MOSFET MAXIMUM RATINGS (T_A = 25°C, unless otherwise noted)


Symbol	Parameter	Ratings	Unit
V _{DS}	Drain to Source Voltage	100	V
V_{GS}	Gate to Source Voltage	±20	V
I _D	Drain Current - Continuous (Note 1a) - Pulsed	4.4 20	Α
E _{AS}	Single Pulse Avalanche Energy (Note 3)	54	mJ
P _D	Power Dissipation (Note 1a) (Note 1b)	2.1 0.9	W
T _J , T _{STG}	Operating and Storage Junction Temperature Range	-55 to +150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

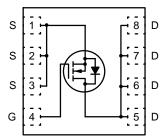
THERMAL CHARACTERISTICS (T_A = 25°C, unless otherwise noted)

Symbol	Parameter	Ratings	Unit
$R_{\theta JC}$	Thermal Resistance, Junction to Case (Note 1)	3.0	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient (Note 1a)	60	

V _{DS}	r _{DS(on)} MAX	I _D MAX
100 V	60 mΩ @ 10 V	4.4 A
	80 mΩ @ 6.0 V	

WDFN8 3.3x3.3, 0.65P (MLP 3x3) CASE 511DH

MARKING DIAGRAM


&Z&2&K FDM 3622

&Z = Assembly Plant Code &2 = 2-Digit Date Code

&K = 2-Digits Lot Run Traceability Code

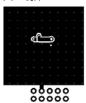
FDM3622 = Specific Device Code

PIN ASSIGNMENT

ORDERING INFORMATION

See detailed ordering and shipping information on page 5 of this data sheet.

FDM3622


ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

Symbol	Parameter	Test Condition	Min	Тур	Max	Unit
OFF CHAR	ACTERISTICS		•			
BV _{DSS}	Drain to Source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0 V$	100	_	-	V
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 80 V, V _{GS} = 0 V	_	_	1	μΑ
		V _{DS} = 80 V, V _{GS} = 0 V, T _J = 100°C	_	_	250	
I _{GSS}	Gate to Source Leakage Current	$V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$	_	_	±100	nA
ON CHARA	CTERISTICS		•			
V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_D = 250 \mu A$	2	_	4	V
r _{DS(on)}	Static Drain to Source On Resistance	V _{GS} = 10 V, I _D = 4.4 A	_	44	60	mΩ
		V _{GS} = 6.0 V, I _D = 3.8 A	_	56	80	
		V _{GS} = 10 V, I _D = 4.4 A, T _J = 150°C	_	92	120	
DYNAMIC (CHARACTERISTICS		•			
C _{iss}	Input Capacitance	$V_{DS} = 25 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$	_	820	1090	pF
C _{oss}	Output Capacitance		_	125	170	pF
C _{rss}	Reverse Transfer Capacitance	1	_	35	55	pF
Rg	Gate Resistance	V _{DS} = 15 mV, f = 1 MHz	0.1	3.1	6.2	Ω
SWITCHING	G CHARACTERISTICS		•			
t _{d(on)}	Turn-On Delay Time	$V_{DD} = 50 \text{ V}, I_D = 4.4 \text{ A}, V_{GS} = 10 \text{ V},$	_	11	20	ns
t _r	Rise Time	$R_{GEN} = 24 \Omega$	_	25	40	ns
t _{d(off)}	Turn-Off Delay Time	1	_	35	56	ns
t _f	Fall Time		_	26	42	ns
Qg	Total Gate Charge	V _{GS} = 10 V, V _{DD} = 50 V, I _D = 4.4 A	_	13	17	nC
Q _{gs}	Gate to Source Gate Charge	1	_	3.6	-	nC
Q _{gd}	Gate to Drain "Miller" Charge		_	3.4	-	nC
DRAIN-SO	URCE CHARACTERISTICS		-			
V_{SD}	Source to Drain Diode Forward Voltage	V _{GS} = 0 V, I _S = 4.4 A	_	_	1.25	V
		V _{GS} = 0 V, I _S = 2.2 A	-	_	1.0	V
t _{rr}	Reverse Recovery Time	I _F = 4.4 A, di/dt = 100 A/μs	-	_	56	ns
Q _{rr}	Reverse Recovery Charge	1	_	_	108	nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

1. $R_{\theta JA}$ is determined with the device mounted on a 1 in² oz copper pad on a 1.5x1.5 in. board of FR-4 material. $R_{\theta JC}$ is guaranteed by design

- while $R_{\theta JA}$ is determined by the user's board design.
 - (a) R_{0.JA} = 60°C/W when mounted on a 1 in² pad of 2 oz copper, 1.5'x1.5'x0.062' thick PCB.
 - (b) $R_{\theta JA} = 135^{\circ}C/W$ when mounted on a minimum pad of 2 oz copper.

a. 60°C/W when mounted on a 1 in² pad of 2 oz copper.

b. 135°C/W when mounted on a minimum pad of 2 oz copper.

- 2. Pulse Test: Pulse Width < 300 μ s, Duty cycle < 2.0%. 3. E_{AS} of 54 mJ is based on starting T_J = 25°C; N-ch: L = 3 mH, I_{AS} = 6 A, V_{DD} = 100 V, V_{GS} = 10 V.

TYPICAL CHARACTERISTICS (T_J = 25°C, unless otherwise noted)

ID, DRAIN CURRENT (A)

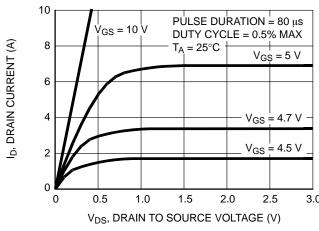


Figure 1. On-Region Characteristics

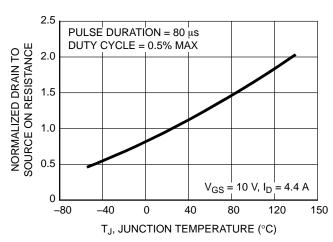


Figure 2. Normalized On–Resistance vs.

Junction Temperature

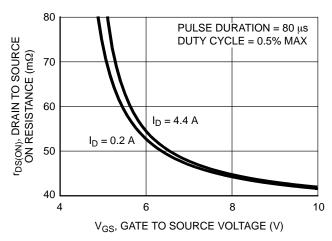


Figure 3. On-Resistance vs. Gate to Source Voltage

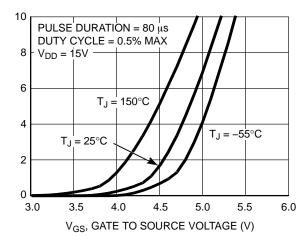


Figure 4. Transfer Characteristics

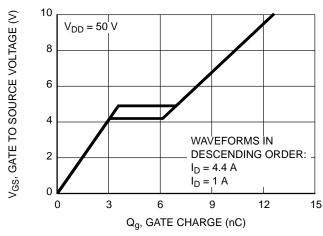


Figure 5. Gate Charge Characteristics

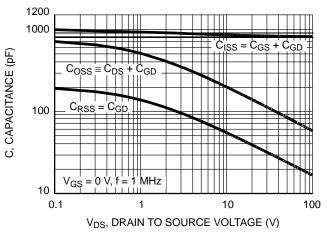


Figure 6. Capacitance vs. Drain to Source Voltage

TYPICAL CHARACTERISTICS (T_J = 25°C, unless otherwise noted) (continued)

ID, DRAIN CURRENT (A)

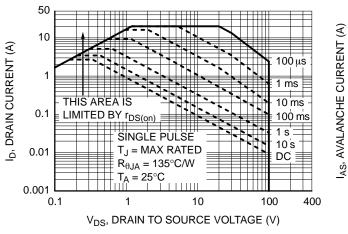


Figure 7. Forward Bias Safe Operating Area

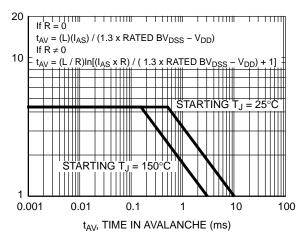


Figure 8. Uncalamped Inductive Switching Capability

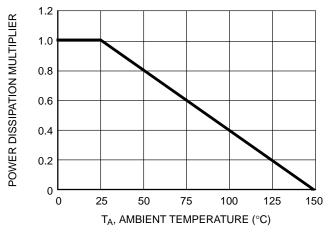


Figure 9. Normalized Power Dissipation vs.
Ambient Temperature

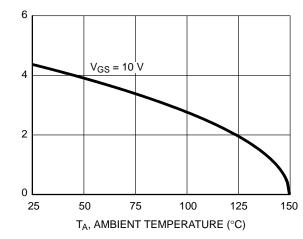


Figure 10. Maximum Continuous Drain Current vs.

Ambient Temperature

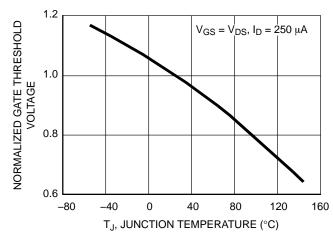


Figure 11. Normalized Gate Threshold Voltage vs.
Junction Temperature

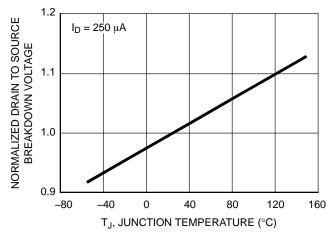


Figure 12. Normalized Drain to Source Breakdown Voltage vs. Junction Temperature

TYPICAL CHARACTERISTICS ($T_J = 25^{\circ}C$, unless otherwise noted) (continued)

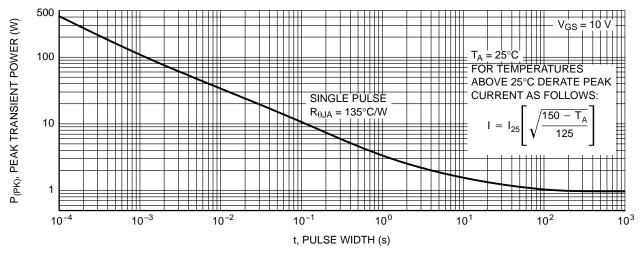


Figure 13. Peak Current Capability

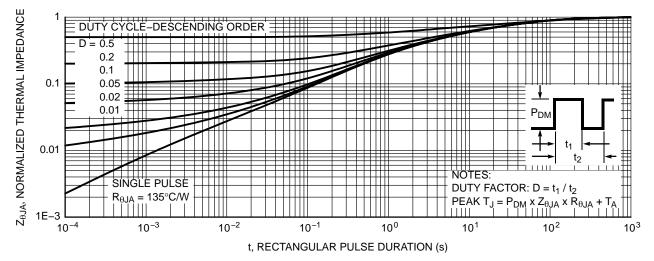
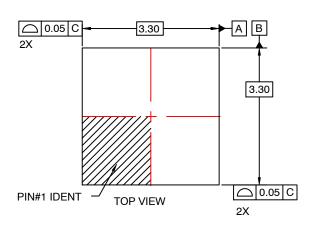
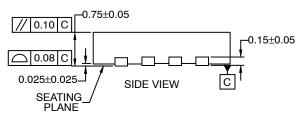


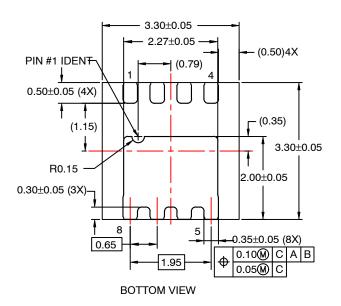
Figure 14. Transient Thermal Response Curve

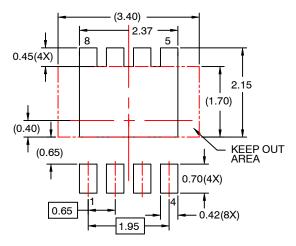
PACKAGE MARKING AND ORDERING INFORMATION

Device	Device Marking	Package	Reel Size	Tape Width	Shipping [†]
FDM3622	FDM3622	WDFN8 3.3x3.3, 0.65P (MLP 3x3) (Pb–Free, Halide Free)	13"	12 mm	3000 / Tape & Reel


[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.


POWERTRENCH is registered trademark of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries.




WDFN8 3.3x3.3, 0.65P CASE 511DH ISSUE O

DATE 31 JUL 2016

RECOMMENDED LAND PATTERN

NOTES:

- A. DOES NOT CONFORM TO JEDEC REGISTRATION MO-229
- B. DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 2009.
- D. LAND PATTERN RECOMMENDATION IS EXISTING INDUSTRY LAND PATTERN.

DOCUMENT NUMBER:	98AON13625G	Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	WDFN8 3.3X3.3, 0.65P		PAGE 1 OF 1	

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales