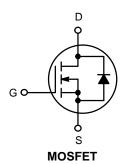


$\frac{\text{MOSFET}}{\text{SUPERFET}^{\mathbb{R}}} - \text{N-Channel,} \\ \text{SUPERFET}^{\mathbb{R}} \text{ II} \\ \text{600 V, 20.2 A, 199 m} \\ \text{FCPF190N60-F154}$

Description

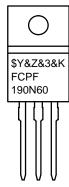
SUPERFET II MOSFET is **onsemi's** brand-new high voltage super-junction (SJ) MOSFET family that is utilizing charge balance technology for outstanding low on-resistance and lower gate charge performance. This technology is tailored to minimize conduction loss, provide superior switching performance, and withstand extreme dv/dt rate and higher avalanche energy. Consequently, SUPERFET II FAST MOSFET series helps minimize various power systems and improve system efficiency.


Features

- 650 V @ T_J= 150°C
- Typ. $R_{DS(on)} = 170 \text{ m}\Omega$
- Ultra Low Gate Charge (Typ. Q_g = 57 nC)
- Low Effective Output Capacitance (Typ. C_{oss}.eff = 160 pF)
- 100% Avalanche Tested
- These Devices are Pb-Free and are RoHS Compliant

Applications

- Computing / Display Power Supplies
- Telecom / Server Power Supplies
- Industrial Power Supplies
- Lighting / Charger / Adapter


V _{DSS}	R _{DS(ON)} MAX	I _D MAX	
600 V	199 mΩ @ 10 V	20.2 A	

TO-220F Ultra Narrow Lead CASE 221BN

MARKING DIAGRAM

\$Y = **onsemi** Logo

&Z = Assembly Plant Code &3 = Data Code (Year & Week)

&K = Lot

FCPF190N60 = Specific Device Code

ORDERING INFORMATION

See detailed ordering and shipping information on page 2 of this data sheet.

ABSOLUTE MAXIMUM RATINGS ($T_C = 25^{\circ}C$, Unless otherwise noted)

Symbol	Par	Value	Unit	
V _{DSS}	Drain to Source Voltage		600	V
V_{GSS}	Gate to Source Voltage	- DC	±20	V
		- AC (f > 1 Hz)	±30	
I _D	Drain Current	− Continuous (T _C = 25°C)	20.2*	А
		- Continuous (T _C = 100°C)	12.7*	
I _{DM}	Drain Current	- Pulsed (Note 1)	60.6*	А
E _{AS}	Single Pulsed Avalanche Energy (Note 2)		400	mJ
I _{AS}	Avalanche Current (Note 2) Repetitive Avalanche Energy (Note 1)		4.0	А
E _{AR}			2.1	mJ
dv/dt	Peak Diode Recovery dv/dt (Note 3)		20	V/ns
	MOSFET dv/dt		100	
P _D	Power Dissipation	(T _C = 25°C)	39	W
		– Derate Above 25°C	0.31	W/°C
T _J , T _{STG}	Operating and Storage Temperature	Operating and Storage Temperature Range		°C
TL	Maximum Lead Temperature for Soldering Purpose, 1/8" from Case for 5 Seconds		300	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. *Drain current limited by maximum junction temperature.

1. Repetitive rating: pulse width limited by maximum junction temperature.

2. $I_{AS} = 4 \text{ A}$, $V_{DD} = 50 \text{ V}$, $R_G = 25 \Omega$, starting $T_J = 25^{\circ}\text{C}$.

3. $I_{SD} \le 10 \text{ A}$, $di/dt \le 200 \text{ A}/\mu\text{s}$, $V_{DD} \le \text{BV}_{DSS}$, starting $T_J = 25^{\circ}\text{C}$.

THERMAL CHARACTERISTICS

Symbol	Symbol Parameter		Unit	
R _{θJC} Thermal Resistance, Junction to Case, Max.		3.2	°C/W	
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient, Max.	62.5	°C/W	

PACKAGE MARKING AND ORDERING INFORMATION

Part Number	Top Marking	Package	Shipping
FCPF190N60-F154	FCPF190N60	TO-220F (Pb-Free)	50 Units / Tube

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
OFF CHARACT	ERISTICS	•	•	•		
BV _{DSS}	Drain to Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, I_D = 10 \text{ mA}, T_J = 25^{\circ}\text{C}$	600	_	_	V
		V _{GS} = 0 V, I _D = 10 mA, T _J = 150°C	650	_	-	V
$\Delta BV_{DSS}/\Delta T_{J}$	Breakdown Voltage Temperature Coefficient	I _D = 10 mA, Referenced to 25°C	-	0.67	_	V/°C
BV _{DS}	Drain-Source Avalanche Breakdown Voltage	V _{GS} = 0 V, I _D = 20 A	-	700	_	V
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 480 V, V _{GS} = 0 V	-	-	10	μΑ
		V _{DS} = 480 V, T _C = 125°C	_	-	10	1
I _{GSS}	Gate to Body Leakage Current	$V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$	_	-	±100	nA
ON CHARACTE	ERISTICS	•	-		•	
V _{GS(th)}	Gate Threshold Voltage	$V_{GS} = V_{DS}, I_D = 250 \mu A$	2.5	_	3.5	V
R _{DS(on)}	Static Drain to Source On Resistance	V _{GS} = 10 V, I _D = 10 A	_	0.17	0.199	Ω
9FS	Forward Transconductance	V _{DS} = 20 V, I _D = 10 A	-	21	_	S
YNAMIC CHA	RACTERISTICS	•		•		
C _{iss}	Input Capacitance	V _{DS} = 25 V, V _{GS} = 0 V, f = 1 MHz	_	2220	2950	pF
C _{oss}	Output Capacitance		_	1630	2165	pF
C _{rss}	Reverse Transfer Capacitance		-	85	128	pF
C _{oss}	Output Capacitance	V _{DS} = 380 V, V _{GS} = 0 V, f = 1 MHz	_	42	_	pF
C _{oss (eff.)}	Effective Output Capacitance	V _{DS} = 0 V to 480 V, V _{GS} = 0 V	_	160	_	pF
Q _{g(tot)}	Total Gate Charge at 10 V	V _{DS} = 380 V, I _D = 10 A, V _{GS} = 10 V	_	57	74	nC
Q _{gs}	Gate to Source Gate Charge	(Note 4)	_	9	-	nC
Q _{gd}	Gate to Drain "Miller" Charge	1	_	21	_	nC
ESR	Equivalent Series Resistance	f = 1 MHz	_	1	-	Ω
WITCHING CH	HARACTERISTICS	•		•		
t _{d(on)}	Turn-On Delay Time	$V_{DD} = 380 \text{ V}, I_D = 10 \text{ A}, V_{GS} = 10 \text{ V},$	_	20	50	ns
t _r	Turn-On Rise Time	$R_g = 4.7 \Omega$ (Note 4)	_	10	30	ns
t _{d(off)}	Turn-Off Delay Time		_	64	138	ns
t _f	Turn-Off Fall Time		-	5	20	ns
OURCE-DRA	IN DIODE CHARACTERISTICS	•				
I _S	Maximum Continuous Source to Drain D	Diode Forward Current	_	_	20.2	Α
I _{SM}	Maximum Pulsed Source to Drain Diode	Forward Current	_	_	60.6	Α
V _{SD}	Source to Drain Diode Forward Voltage	V _{GS} = 0 V, I _{SD} = 10 A	_	_	1.2	V
t _{rr}	Reverse Recovery Time	V _{DD} = 400 V, I _{SD} = 10 A,	_	280	_	ns
Q _{rr}	Reverse Recovery Charge	dl _F /dt = 100 A/μs	_	3.8	_	μC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

4. Essentially independent of operating temperature typical characteristics.

TYPICAL PERFORMANCE CHARACTERISTICS

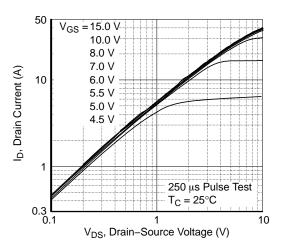


Figure 1. On-Region Characteristics

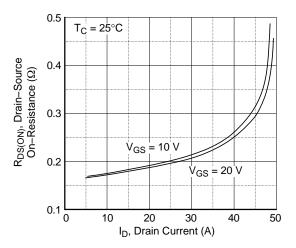


Figure 3. On-Resistance Variation vs.
Drain Current and Gate Voltage

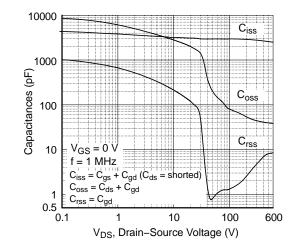


Figure 5. Capacitance Characteristics

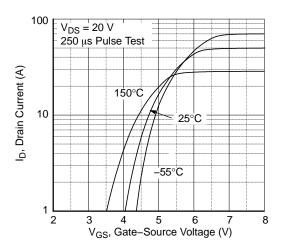


Figure 2. Transfer Characteristics

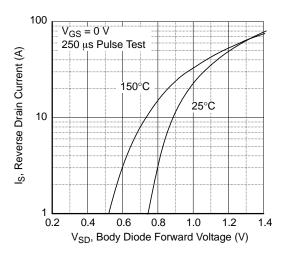


Figure 4. Body Diode Forward Voltage Variation vs. Source Current and Temperature

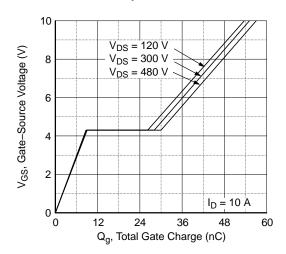


Figure 6. Gate Charge Characteristics

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

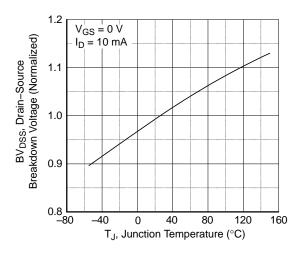


Figure 7. Breakdown Voltage Variation vs. Temperature

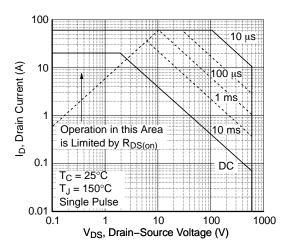


Figure 9. Maximum Safe Operating Area

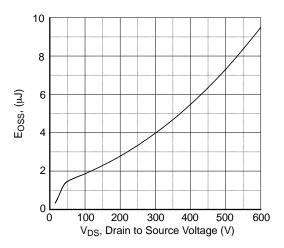


Figure 11. E_{OSS} vs. Drain-to-Source Voltage

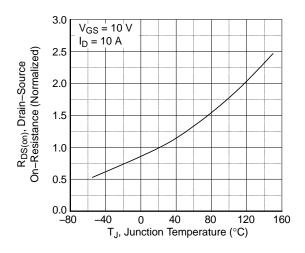


Figure 8. On–Resistance Variation vs. Temperature

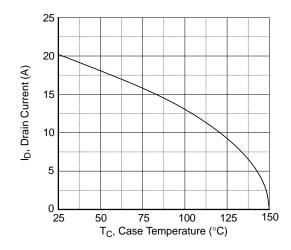


Figure 10. Maximum Drain Current vs. Case Temperature

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

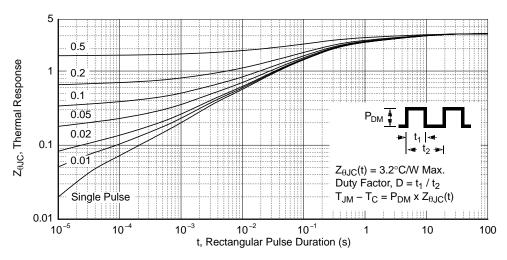


Figure 12. Transient Thermal Response Curve

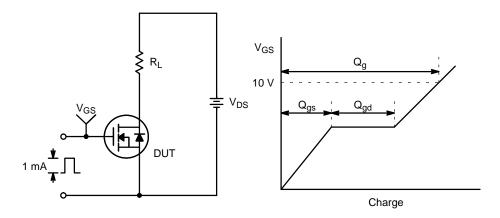


Figure 13. Gate Charge Test Circuit & Waveform

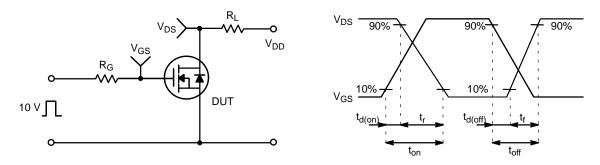


Figure 14. Resistive Switching Test Circuit & Waveforms

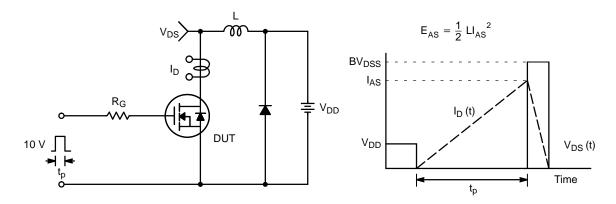


Figure 15. Unclamped Inductive Switching Test Circuit & Waveforms

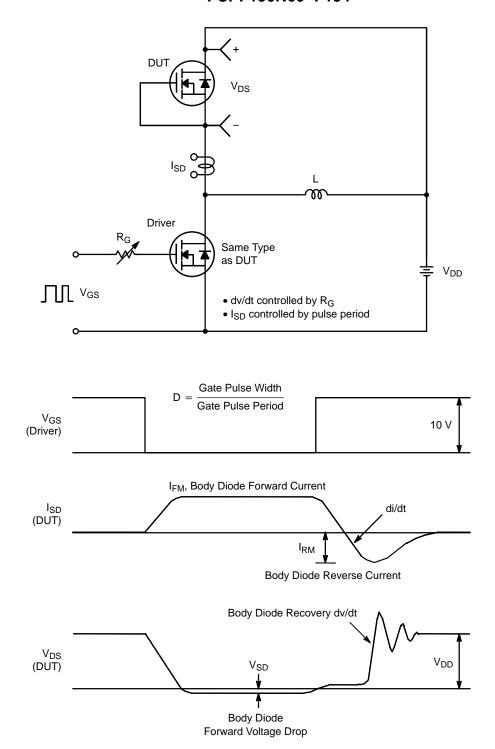
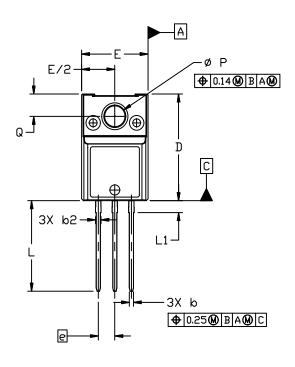
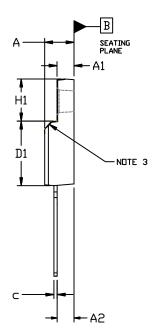


Figure 16. Peak Recovery dv/dt Test Circuit & Waveforms

SUPERFET is a registered trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.

PACKAGE DIMENSIONS


TO-220 FULLPACK, 3-LEAD


CASE 221BN ISSUE O

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
- 2. CONTROLLING DIMENSION: MILLIMETERS
- 3. CONTOUR UNCONTROLLED IN THIS AREA.
- DIMENSIONS EXCLUDE BURRS, MOLD FLASH, AND TIE BAR PROTRUSIONS.

MILLIMETERS			
MIN.	N□M.	MAX.	
4.60	4.70	4.80	
2.50	2.60	2.70	
2.47	2.57	2.67	
0.56	0.63	0.69	
		0.90	
0.46	0.53	0.59	
15.80	16.00	16.20	
9.58	9.68	9.78	
10.00	10.20	10.40	
2.54 BSC			
6.32 REF			
13.45	13.60	13.75	
1.70	1.80	1.90	
3.00	3.10	3.20	
3.25	3.35	3.45	
	MIN. 4.60 2.50 2.47 0.56 0.46 15.80 9.58 10.00 13.45 1.70 3.00	MIN. NDM. 4.60 4.70 2.50 2.60 2.47 2.57 0.56 0.63 0.46 0.53 15.80 16.00 9.58 9.68 10.00 10.20 2.54 BSC 6.32 REF 13.45 13.60 1.70 1.80 3.00 3.10	

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative