ON Semiconductor

Is Now

To learn more about onsemi™, please visit our website at www.onsemi.com
Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor’s system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.
FAN5340
Synchronous Constant-Current Series Boost LED Driver with PWM Brightness Control and Integrated Load Disconnect

Features
- Synchronous Current-Mode Boost Converter
- Up to 500mW Output Power
- Supports 2, 3, or 4 LEDs in Series
- 2.7V to 4.8V Input Voltage Range
- 1.2MHz Fixed Switching Frequency
- 1mA Maximum Quiescent Current
- Soft-Start Capability
- Input Under-Voltage Lockout (UVLO)
- Output Over-Voltage Protection (OVP)
- Short-Circuit Detection
- Thermal Shutdown (TSD) Protection
- 8-Lead 3.00 x 3.00mm MLP
- 8-Bump 1.57 x 1.57mm WLCSP

Applications
- Cellular Phones, Smart Phones
- Pocket PCs
- WLAN DC-DC Converter Modules
- PDA, DSC, PMP, and MP3 Players

Description
The FAN5340 is a synchronous constant-current LED driver capable of efficiently delivering up to 500mW to a string of up to four LEDs in series. Optimized for small form-factor applications, the 1.2MHz fixed switching frequency allows the use of chip inductors and capacitors.

For safety, the device features integrated short-circuit detection plus over-voltage and thermal shutdown protections. In addition, input under-voltage lockout protection is triggered if the battery voltage is low.

Brightness (dimming) control is implemented by applying a PWM signal of 300Hz to 1kHz on the EN pin. During shutdown, the FAN5340 disconnects the LED anodes from the output of the boost regulator, which holds the boost regulator’s voltage on COUT, reducing audible noise from the PWM dimming and removing power from the LED string.

Ordering Information

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Operating Temperature Range</th>
<th>Package</th>
<th>Packing</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAN5340UCX</td>
<td>-40 to 85°C</td>
<td>8-Bump, 1.57 x 1.57mm WLCSP</td>
<td>Tape and Reel</td>
</tr>
<tr>
<td>FAN5340MPX</td>
<td>-40 to 85°C</td>
<td>8-Lead, 3.00 x 3.00mm MLP</td>
<td>Tape and Reel</td>
</tr>
</tbody>
</table>
Table 1. Recommended External Components

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
<th>Vendor</th>
<th>Parameter</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td>22μH Nominal</td>
<td>Murata LQH3NPN220MGOK</td>
<td>L(^{(1)})</td>
<td>22</td>
<td>μH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COUT</td>
<td>4.7μF X5R or Better</td>
<td></td>
<td>DCR (Series R)</td>
<td>1100</td>
<td>mΩ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIN</td>
<td>4.7μF X5R or Better</td>
<td></td>
<td>C</td>
<td>4.7</td>
<td>μF</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:
1. Minimum L (inductance) incorporates tolerance, temperature, and DC bias effects (L decreases with increasing current).
Pin Configuration

Figure 3. WLCSP Package, Top View

Figure 4. WLCSP Package, Bottom View

Figure 5. 8-Pin 3 x 3mm MLP, Top View

Pin Definitions

<table>
<thead>
<tr>
<th>Pin #</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSP A1</td>
<td>1</td>
<td>GND</td>
</tr>
<tr>
<td>CSP A2</td>
<td>2</td>
<td>EN</td>
</tr>
<tr>
<td>CSP A3</td>
<td>3</td>
<td>VLED</td>
</tr>
<tr>
<td>CSP B3</td>
<td>4</td>
<td>FB</td>
</tr>
<tr>
<td>CSP C3</td>
<td>5</td>
<td>PGND</td>
</tr>
<tr>
<td>CSP C2</td>
<td>6</td>
<td>SW</td>
</tr>
<tr>
<td>CSP C1</td>
<td>7</td>
<td>VOUT</td>
</tr>
<tr>
<td>CSP B1</td>
<td>8</td>
<td>VIN</td>
</tr>
</tbody>
</table>
Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min.</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{IN}</td>
<td>V_{IN}</td>
<td>-0.3</td>
<td>6.0</td>
<td>V</td>
</tr>
<tr>
<td>V_{FB}, V_{EN}</td>
<td>V_{FB}, V_{EN}</td>
<td>-0.3</td>
<td>$V_{IN} + 0.3$</td>
<td>V</td>
</tr>
<tr>
<td>V_{SW}</td>
<td>V_{SW}</td>
<td>-0.3</td>
<td>24.0</td>
<td>V</td>
</tr>
<tr>
<td>V_{OUT}</td>
<td>V_{OUT}</td>
<td>-0.3</td>
<td>24.0</td>
<td>V</td>
</tr>
<tr>
<td>ESD</td>
<td>Electrostatic Discharge Protection Level</td>
<td>4.0</td>
<td>kV</td>
<td></td>
</tr>
<tr>
<td>T_J</td>
<td>Junction Temperature</td>
<td>-40</td>
<td>$+150$</td>
<td>°C</td>
</tr>
<tr>
<td>T_{STG}</td>
<td>Storage Temperature</td>
<td>-65</td>
<td>$+150$</td>
<td>°C</td>
</tr>
<tr>
<td>T_L</td>
<td>Lead Soldering Temperature, 10 Seconds</td>
<td>$+260$</td>
<td>°C</td>
<td></td>
</tr>
</tbody>
</table>

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to absolute maximum ratings.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{IN}</td>
<td>V_{IN} Supply Voltage</td>
<td>2.7</td>
<td>4.8</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V_{OUT}</td>
<td>V_{OUT} Voltage</td>
<td>6.2</td>
<td>16.0</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>I_{OUT}</td>
<td>I_{OUT} Load Current</td>
<td>5</td>
<td>40</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>f_{EN_PWM}</td>
<td>EN pin PWM Dimming Frequency</td>
<td>100</td>
<td>300</td>
<td>1000</td>
<td>Hz</td>
</tr>
<tr>
<td>T_A</td>
<td>Ambient Temperature</td>
<td>-40</td>
<td>$+85$</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>T_J</td>
<td>Junction Temperature</td>
<td>-40</td>
<td>$+125$</td>
<td>°C</td>
<td></td>
</tr>
</tbody>
</table>

Thermal Properties

Junction-to-ambient thermal resistance is a function of application and board layout. This data is measured with four-layer 2s2p evaluation boards in accordance to JEDEC standard JESD51. Special attention must be paid not to exceed junction temperature $T_{J(max)}$ at a given ambient temperate T_A.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Typ.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>θ_{JA}</td>
<td>Junction-to-Ambient Thermal Resistance</td>
<td>110</td>
<td>°C/W</td>
</tr>
<tr>
<td></td>
<td>WLCSP Package</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MLP Package</td>
<td>49</td>
<td>°C/W</td>
</tr>
</tbody>
</table>
Electrical Specifications

\(V_{IN} = 2.7V \) to 4.8V and \(T_A = -40^\circ C \) to +85°C unless otherwise noted. Typical values are at \(T_A = 25^\circ C \) and \(V_{IN} = 3.6V \).

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i_Q)</td>
<td>Quiescent Current</td>
<td>(EN = V_{IN}, Device) Not Switching</td>
<td>1</td>
<td></td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>(i_{SD})</td>
<td>Shutdown Supply Current</td>
<td>(EN = GND, V_{IN} = 3.6V)</td>
<td>0.3</td>
<td>1.0</td>
<td></td>
<td>(\mu A)</td>
</tr>
<tr>
<td>(V_{UVLO})</td>
<td>Under-Voltage Lockout</td>
<td>(V_{IN}) Rising</td>
<td>2.30</td>
<td>2.40</td>
<td>2.50</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{IN}) Falling</td>
<td>2.00</td>
<td>2.15</td>
<td>2.25</td>
<td>V</td>
</tr>
<tr>
<td>(V_{UVHYST})</td>
<td>Under-Voltage Lockout Hysteresis</td>
<td></td>
<td>250</td>
<td></td>
<td></td>
<td>mV</td>
</tr>
<tr>
<td>EN: Enable Pin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{IH})</td>
<td>HIGH-Level Input Voltage</td>
<td></td>
<td>1.2</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>(V_{IL})</td>
<td>LOW-Level Input Voltage</td>
<td></td>
<td>0.4</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>(R_{EN})</td>
<td>EN Pull-Down Resistance</td>
<td></td>
<td>200</td>
<td>300</td>
<td>400</td>
<td>k(\Omega)</td>
</tr>
<tr>
<td>(t_{SD})</td>
<td>EN Low to Shutdown Delay</td>
<td>From Falling Edge of EN</td>
<td>20</td>
<td></td>
<td></td>
<td>ms</td>
</tr>
<tr>
<td>Feedback and Reference</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{FB})</td>
<td>Feedback Voltage</td>
<td>(V_{FB} = 500mV)</td>
<td>480</td>
<td>500</td>
<td>520</td>
<td>mV</td>
</tr>
<tr>
<td>(I_{FB})</td>
<td>Feedback Input Current</td>
<td></td>
<td>0.1</td>
<td>1.0</td>
<td></td>
<td>(\mu A)</td>
</tr>
<tr>
<td>Power Outputs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(R_{DS(ON)}Q1)</td>
<td>Boost Switch On-Resistance</td>
<td>(V_{IN} = 3.6V, V_{OUT} = 10V, I_{SW} = 100mA)</td>
<td>600</td>
<td></td>
<td></td>
<td>m(\Omega)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{IN} = 2.7V, V_{OUT} = 10V, I_{SW} = 100mA)</td>
<td>850</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(R_{DS(ON)}Q2)</td>
<td>Synchronous Rectifier On-Resistance</td>
<td>(V_{OUT} = 10V, I_{SW} = 100mA)</td>
<td>2.0</td>
<td></td>
<td></td>
<td>(\Omega)</td>
</tr>
<tr>
<td>(R_{DS(ON)}Q3)</td>
<td>Load Switch On-Resistance</td>
<td>(V_{OUT} = 10V, I_{LED} = 10mA)</td>
<td>2.8</td>
<td></td>
<td></td>
<td>(\Omega)</td>
</tr>
<tr>
<td>(I_{SW(OFF)})</td>
<td>SW Node Leakage(a)</td>
<td>EN = 0, (V_{IN} = V_{SW} = V_{OUT} = 5.5V,) (V_{LED} = 0)</td>
<td>0.1</td>
<td>1.0</td>
<td></td>
<td>(\mu A)</td>
</tr>
<tr>
<td>(I_{ILIM,PK})</td>
<td>Boost Switch Peak Current Limit</td>
<td>(V_{IN} = 3.6V)</td>
<td>325</td>
<td>400</td>
<td>475</td>
<td>mA</td>
</tr>
<tr>
<td>Oscillator</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(f_{SW})</td>
<td>Boost Regulator Switching Frequency</td>
<td></td>
<td>1.0</td>
<td>1.2</td>
<td>1.4</td>
<td>MHz</td>
</tr>
<tr>
<td>PWM Dimming</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\Delta_{PWM})</td>
<td>PWM Duty Cycle(3)</td>
<td>PWM Dimming Frequency (\leq 1kHz)</td>
<td>1.0</td>
<td></td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>Output and Protection</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{OPV})</td>
<td>Boost Output Over-Voltage Protection</td>
<td>(V_{IN})</td>
<td>18.0</td>
<td>19.0</td>
<td>20.0</td>
<td>V</td>
</tr>
<tr>
<td>(V_{OVPHYST})</td>
<td>OVP Hysteresis</td>
<td></td>
<td>0.8</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>(V_{THSC})</td>
<td>V_{LED} Short-Circuit Detection Threshold</td>
<td>(V_{OUT}) Falling</td>
<td>(V_{IN} - 1.5)</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{OUT}) Rising</td>
<td>(V_{IN} - 1.3)</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>(\Delta_{MAX})</td>
<td>Maximum Boost Duty Cycle(3)</td>
<td></td>
<td>85</td>
<td></td>
<td></td>
<td>%</td>
</tr>
<tr>
<td>(\Delta_{MIN})</td>
<td>Minimum Boost Duty Cycle(3)</td>
<td></td>
<td>20</td>
<td></td>
<td></td>
<td>%</td>
</tr>
<tr>
<td>(T_{SD})</td>
<td>Thermal Shutdown</td>
<td></td>
<td>150</td>
<td></td>
<td></td>
<td>°C</td>
</tr>
<tr>
<td>(T_{HYS})</td>
<td>Thermal Shutdown Hysteresis</td>
<td></td>
<td>25</td>
<td></td>
<td></td>
<td>°C</td>
</tr>
</tbody>
</table>

Notes:
1. \(\Delta_{SD} \) leakage current includes the leakage current of three internal switches; SW to GND, \(V_{OUT} \) to \(V_{LED} \), and SW to \(V_{OUT} \).
2. Guaranteed by design.

© 2010 Fairchild Semiconductor Corporation
FAN5340 • Rev. 1.0.1
Typical Characteristics

$V_{IN} = 3.6V$, $T_A = 25^\circ C$, $I_{LED} = 20mA$, $L = 22\mu H$, $C_{OUT} = 4.7\mu F$.

- Figure 6. Efficiency vs. LED Current: Two LEDs
- Figure 7. Efficiency vs. LED Current: Three LEDs
- Figure 8. Efficiency vs. LED Current: Four LEDs
- Figure 9. f_{SW} vs. Input Voltage vs. Temperature
- Figure 10. FB Voltage vs. Input Voltage vs. Temperature
- Figure 11. OVP vs. Input Voltage vs. Temperature
Typical Characteristics (Continued)

Figure 12. PWM Linearity Over Full Dimming Duty Cycle Range, Four LEDs

Figure 13. PWM Linearity with Dimming Duty Cycle <2.5%, Four LEDs

Figure 14. Maximum Output Current at V_{OUT}

Figure 15. Line Transient with 10µs Line Step, Four LEDs

Figure 16. Over-Voltage Protection: Soft-Start into Open LED String
Figure 17. Cold-Start Waveform with 100% Duty Cycle at 1ms/Div.

Figure 18. Cold-Start Waveform with 100% Duty Cycle Showing Startup, Shutdown and Startup at 10ms/Div.

Figure 19. FAN5340 \(I_{LOAD}\) Step from 20mA to 30mA by Enabling FAN5640 at 10mA, Three LEDs

Figure 20. FAN5340 \(I_{LOAD}\) Step from 30mA to 20mA by Disabling FAN5640 at 10mA, Three LEDs
Circuit Description

Overview
The FAN5340 is an inductive current-mode boost serial LED driver that achieves LED current regulation by maintaining 0.5V across RSET. The current through the LED string (ILED) is therefore:

\[I_{LED} = \frac{0.5}{R_{SET}} \]

While the forward-voltage across the LEDs determines VOUT, the FAN5340’s boost regulator output can also support additional loads on VOUT (see Figure 21) provided its input current limit is not exceeded.

Over-Voltage Protection
If the LED string is open circuit, FB remains at 0V and the output voltage continues to increase in the absence of an Over-Voltage Protection (OVP) circuit. The FAN5340’s OVP circuit disables the boost regulator when VOUT exceeds 19.0V and continues to keep the regulator off until VOUT drops below 18.2V.

Thermal Shutdown
If the die temperature exceeds 150°C, a reset occurs and remains in effect until the die cools to 125°C, at which time the circuit is allowed to begin the soft-start sequence.

Applications

Using VOUT to Drive Additional LED Strings
The VOUT pin can be used as a supply for simple current sources (shown in Figure 22 using the FAN5640) or discrete current sinks. To avoid dragging VOUT down when the EN pin is LOW, the auxiliary strings should not be enabled unless the EN pin is HIGH. The auxiliary strings can therefore be PWM dimmed using either the same line as the EN line as shown below or enabled separately, but within the on-time of the FAN5340.

Short-Circuit Detection
If VOUT falls below VIN – 1.5V, Q3 turns off and remains off until VOUT recovers to at least VIN – 1.3V.
Physical Dimensions

Product-Specific Dimensions

<table>
<thead>
<tr>
<th>Product</th>
<th>D</th>
<th>E</th>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAN5340UC</td>
<td>1.570</td>
<td>1.570</td>
<td>0.285</td>
<td>0.285</td>
</tr>
</tbody>
</table>

Figure 23. 8-Bump, 1.57 x 1.57mm Wafer Level Chip-Scale Package (WLCSP)

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild’s worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor’s online packaging area for the most recent package drawings: http://www.fairchildsemi.com/packaging/
Physical Dimensions (Continued)

Figure 24. 8-Pin, 3 x 3mm Molded Leadless Package (MLP)

NOTES:

A. CONFORMS TO JEDEC REGISTRATION MO-229, VARIATION VEEC, DATED 11/2001
B. DIMENSIONS ARE IN MILLIMETERS.
C. DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994
D. FILENAME: MKT-MLP08Drev2

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild’s worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor’s online packaging area for the most recent package drawings: http://www.fairchildsemi.com/packaging/
Trademarks

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

- AccuPower™
- Auto-SPM™
- BuildView™
- CorePLUS™
- CorePOWER™
- CROSSVOLT™
- CTL™
- Current Transfer Logic™
- DEUXPEED™
- Dual Cool™
- Ecospark™
- EfficientMax™
- ESBIC™
- F™
- Fairchild®
- FACT Quiet Series™
- FACT™
- FAST™
- FlashXtreme™
- FFS™
- F-PFS™
- FFET™
- Global Power Resource™
- Green FPS™
- Green FPS™ e-Series™
- Gx™
- GTO™
- InFPAK™
- ISOLplanar™
- MegaBuck™
- MicroCoupler™
- MicroFET™
- MicroFET2™
- MillerCree™
- MotionMax™
- Motion-SPM™
- OptiH™
- OPTO-LOGIC™
- OPTOPLANAR™
- POP™
- Power-SPM™
- ProPowerTrench™
- PowerSx™
- Programmable Active Drive™
- QFET™
- Qx™
- Quiet Series™
- RapidConfigure™
- Saving our world. Think Green.™
- Signal Sync™
- SmartMerz™
- SMART START™
- SPM™
- STEALTH™
- Sub40™
- Super SOT™
- SuperSOT™ 2B
- SuperSOT™ 4B
- SyncFET™
- SyncLock™
- TinyBoost™
- TinyCalc™
- TinyLogic™
- TINYOpto™
- TinyPower™
- TinyPWM™
- TinyXtreme™
- TRUECURRENT™
- TrueDiss™
- uTP™
- UniFET™
- UniPower™
- Vx™
- ValuaMax™

* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HERIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONvey OR OTHERWISE GRANT ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS THESE SPECIFICATIONS DO NOT EXPAND THE TERMS AND CONDITIONS SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THIS PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation’s Anti-Counterfeiting Policy. Fairchild’s Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeitings of their parts. Customers who unknowingly purchase counterfeit parts experience many problems such as loss of brand reputation, outdated perform ances, invalid applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page dated above. Products purchased either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild’s quality standards for handling and storage and provide access to Fairchild’s full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

<table>
<thead>
<tr>
<th>Definition of Terms</th>
<th>Product Status</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advance Information</td>
<td>Formative / In Design</td>
<td>Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.</td>
</tr>
<tr>
<td>Preliminary</td>
<td>First Production</td>
<td>Datasheet contains preliminary data. Supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.</td>
</tr>
<tr>
<td>No Identification Needed</td>
<td>Full Production</td>
<td>Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.</td>
</tr>
<tr>
<td>Obsolete</td>
<td>Not In Production</td>
<td>Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.</td>
</tr>
</tbody>
</table>