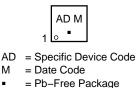

4-Channel Low Capacitance Dual-Voltage ESD and Surge Protection Array

Features

- 3 Channels of Low Voltage ESD Protection
- 1 Channel of High Voltage ESD Protection
- Provides ESD Protection to IEC61000-4-2 Level 4: ±25 kV Contact Discharge
- IEC 61000–4–5 (lighting)
- Low Channel Input Capacitance
- High Voltage Zener Diode Protects Supply Rail up to 100 A (8/20 µs)
- These Devices are Pb–Free and are RoHS Compliant

ON Semiconductor®

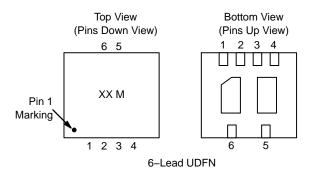

http://onsemi.com

UDFN-6 D4 SUFFIX CASE 517CS

BLOCK DIAGRAM

MARKING DIAGRAM

ORDERING INFORMATION


Device	Package	Shipping [†]
ESD7124MUTBG	UDFN–6 (Pb–Free)	3000/Tape & Reel
	(FD-Flee)	Reel

⁺For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

Table 1. PIN DESCRIPTIONS

	4–Channel, 6–Lead, UDFN–8 Package					
Pin	Pin Name Type Description					
1	V _{CC}	$\rm HV V_{\rm DD}$	HV ESD Channel			
2	CH1	I/O	LV Low-capacitance ESD Channel			
3	CH2	I/O	LV Low-capacitance ESD Channel			
4	СНЗ	I/O	LV Low-capacitance ESD Channel			
5	GND		Ground			
6	GND		Ground			

PACKAGE / PINOUT DIAGRAMS

SPECIFICATIONS

Table 2. ABSOLUTE MAXIMUM RATINGS

Parameter	Rating	Units
Operating Temperature Range	-55 to +125	°C
Storage Temperature Range	-65 to +150	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

Table 3. ELECTRICAL CHARACTERISTICS

	Reverse Working Voltage	g Breakdown Voltage Vbr (V) at 1 mA		Reverse Current Leakage Ir (µA)	Rdyn	Junction Capactance Cj(pF)	
	Vrwm (V)			t 1 mA at Vrwm		Vr = 0 V, f = 1 MHz	
Device Name	Max	Min	Тур	Max	Тур	Тур	Max
Pin2-4 (LV)	3.3	5.5 6.5		1	1	0.35	0.5
Pin1 (HV)	12	13.3	14	1			

		′oltage Vc (V) x 20 μs		Ratings 8 x 20 μs	
	lpp = 1 A	lpp = 16 A	lpp (A)	Vc @ Max lpp (V)	
Device Name	Тур	Тур	Max	Мах	
Pin1 (HV)	15	16	100	27	
Pin2-4 (LV)	9.5				

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Clamping Voltage TLP (Note 1) All Devices Pin2-4(LV) See Figures 3 – 6	V _C	$I_{PP} = \pm 8 \text{ A} \qquad \begin{cases} IEC 61000-4-2 \text{ Level 2 equivalent} \\ (\pm 4 \text{ kV Contact}, \pm 4 \text{ kV Air}) \end{cases}$		16.8		V
		$I_{PP} = \pm 16 \text{ A} \begin{cases} \text{IEC } 61000 - 4 - 2 \text{ Level 4 equivalent} \\ (\pm 8 \text{ kV Contact}, \pm 15 \text{ kV Air}) \end{cases}$		24.9		

1. ANSI/ESD STM5.5.1 – Electrostatic Discharge Sensitivity Testing using Transmission Line Pulse (TLP) Model. TLP conditions: $Z_0 = 50 \ \Omega$, $t_p = 100 \ ns$, $t_r = 4 \ ns$, averaging window; $t_1 = 30 \ ns$ to $t_2 = 60 \ ns$.

ESD7124

TYPICAL CHARACTERISTICS

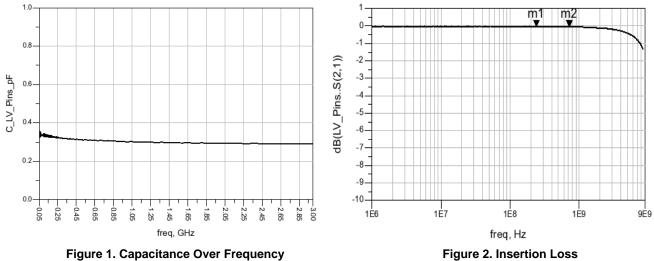
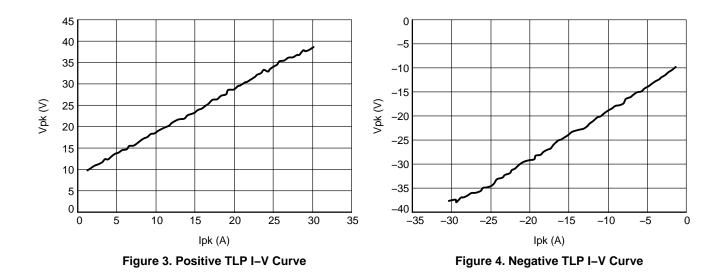



Figure 2. Insertion Loss

Interface	Data Rate (Mb/s)	Fundamental Frequency (MHz)	3 rd Harmonic Frequency (MHz)	ESD7124 Insertion Loss (dB)
USB 2.0	480	240 (m1)	720 (m2)	m1 = 0.031 m2 = 0.047

Transmission Line Pulse (TLP) Measurement

Transmission Line Pulse (TLP) provides current versus voltage (I–V) curves in which each data point is obtained from a 100 ns long rectangular pulse from a charged transmission line. A simplified schematic of a typical TLP system is shown in Figure 5. TLP I–V curves of ESD protection devices accurately demonstrate the product's ESD capability because the 10s of amps current levels and under 100 ns time scale match those of an ESD event. This is illustrated in Figure 6 where an 8 kV IEC 61000–4–2 current waveform is compared with TLP current pulses at 8 A and 16 A. A TLP I–V curve shows the voltage at which the device turns on as well as how well the device clamps voltage over a range of current levels. For more information on TLP measurements and how to interpret them please refer to AND9007/D.

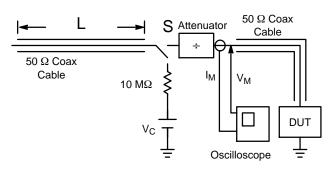


Figure 5. Simplified Schematic of a Typical TLP System

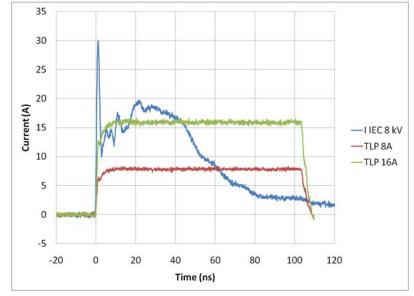
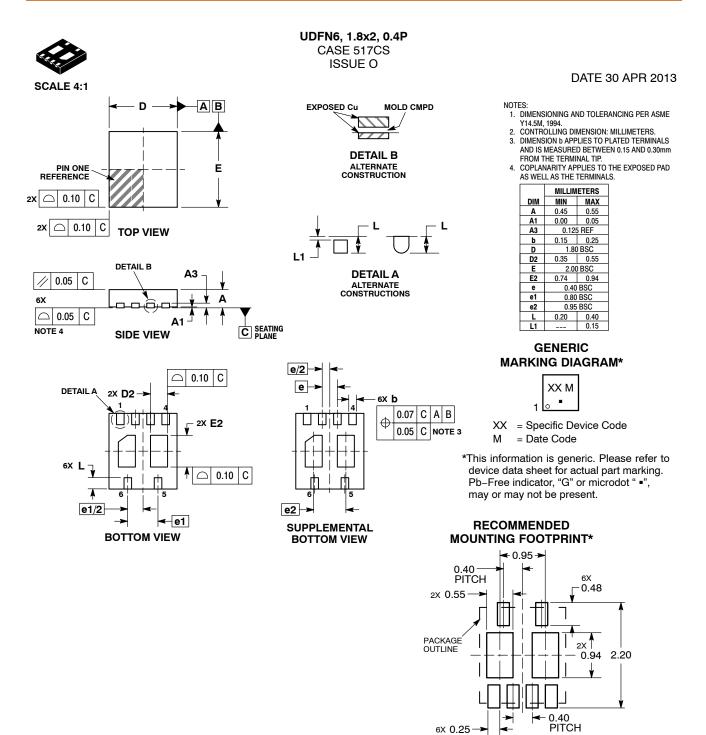



Figure 6. Comparison Between 8 kV IEC 61000-4-2 and 8 A and 16 A TLP Waveforms

onsemi

DIMENSIONS: MILLIMETERS *For additional information on our Pb–Free strategy and soldering details, please download the **onsemi** Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

DOCUMENT NUMBER:	98AON89602E	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	UDFN6 1.8X2, 0.4P		PAGE 1 OF 1	

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>