MOSFET - Power for 1-Cell Lithium-ion Battery Protection

EFC2K103NUZ 12 V, 1.8 mΩ, 40 A, Dual N-Channel

This power MOSFET features a low on-state resistance. This device is suitable for applications such as power switches of portable machines. Best suited for 1-cell lithium-ion battery applications.

Features

- 2.5 V drive
- Common–Drain type
- ESD Diode–Protected Gate
- Pb-Free, Halogen Free and RoHS Compliance

Typical Applications

• 1-Cell Lithium-ion Battery Charging and Discharging Switch

SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS at $T_A = 25^{\circ}C$

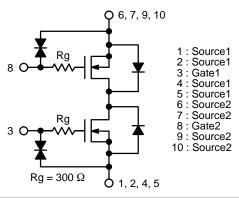
Parameter	Symbol	Value	Unit
Source to Source Voltage	V _{SSS}	12	V
Gate to Source Voltage	V _{GSS}	±8	V
Source Current (DC)	ا _S	40	А
Source Current (Pulse) PW \leq 10 μ S, Duty Cycle \leq 1%	I _{SP}	140	A
Total Dissipation (Note 1)	P _T	3.3	W
Junction Temperature	TJ	150	°C
Storage Temperature	T _{stg}	-55 to +150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

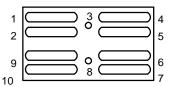
THERMAL RESISTANCE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Junction to Ambient (Note 1)	$R_{ hetaJA}$	37	°C/W

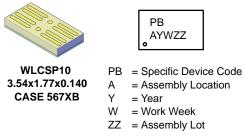
1. Surface mounted on ceramic substrate (5000 $\text{mm}^2 \times 0.8 \text{ mm})$


ON Semiconductor®

www.onsemi.com


V _{SSS}	R _{SS(ON)} MAX	I _S MAX
12 V	1.8 mΩ @ 4.5 V	40 A
	1.9 mΩ @ 3.8 V	
	2.6 mΩ @ 3.1 V	
	4.2 mΩ @ 2.5 V	

ELECTRICAL CONNECTION


N-Channel

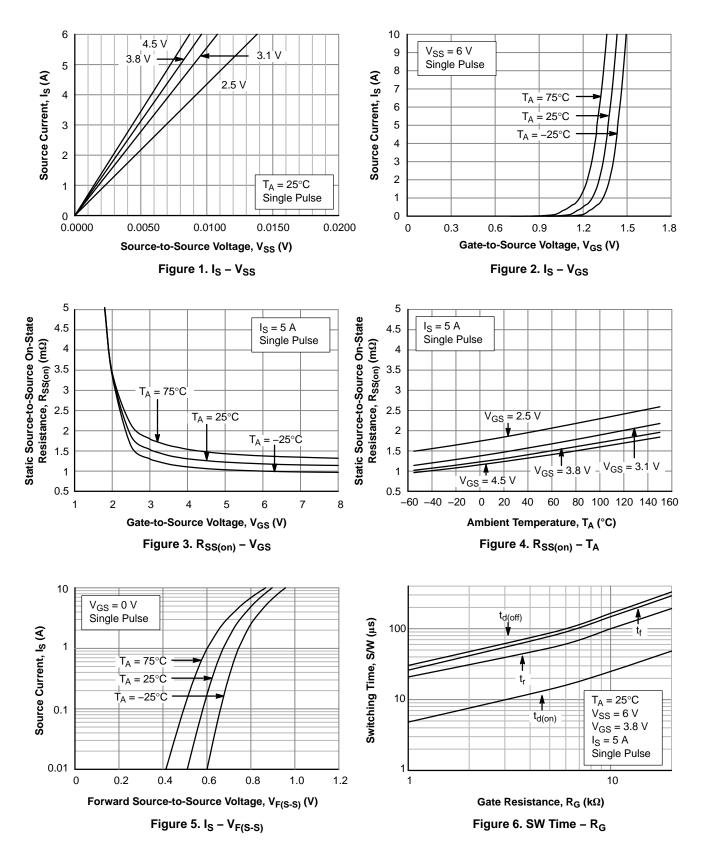
MARKING DIAGRAM

ORDERING INFORMATION

See detailed ordering, marking and shipping information in the package dimensions section on page 2 of this data sheet.

ELECTRICAL CHARACTERISTICS at $T_A = 25^{\circ}C$

				Value			
Parameter Symb		Conditions		Min	Тур	Max	Unit
Source to Source Breakdown Voltage	V _{(BR)SSS}	I_{S} = 1 mA, V_{GS} = 0 V	Test Circuit 1	12	-	-	V
Zero Gate Voltage Source Current	I _{SSS}	$V_{SS} = 10 \text{ V}, V_{GS} = 0 \text{ V}$	Test Circuit 1	-	-	1	μA
Gate to Source Leakage Current	I _{GSS}	$V_{GS} = \pm 8 \text{ V}, V_{SS} = 0 \text{ V}$	Test Circuit 2	-	-	±1	μΑ
Gate Threshold Voltage	V _{GS} (th)	$V_{SS} = 6 V, I_{S} = 1 mA$	Test Circuit 3	0.4	-	1.3	V
Static Source to Source On–State Resistance	R _{SS} (on)	$I_{\rm S}$ = 5 A, $V_{\rm GS}$ = 4.5 V	Test Circuit 4	0.8	1.25	1.8	mΩ
		$I_{S} = 5 \text{ A}, V_{GS} = 3.8 \text{ V}$	Test Circuit 4	0.85	1.35	1.9	mΩ
		$I_{\rm S} = 5$ A, $V_{\rm GS} = 3.1$ V	Test Circuit 4	1.0	1.7	2.6	mΩ
		I _S = 5 A, V _{GS} = 2.5 V	Test Circuit 4	1.2	2.1	4.2	mΩ
Turn–ON Delay Time	t _d (on)	V_{SS} = 6 V, V_{GS} = 3.8 V, I_S = 5 A, R_G = 10 $k\Omega$ Test Circuit 5		_	25	_	μs
Rise Time	t _r			-	100	-	μs
Turn-OFF Delay Time	t _d (off)			-	165	-	μs
Fall Time	t _f			-	148	-	μs
Total Gate Charge	Qg	$V_{SS} = 6 \text{ V}, V_{GS} = 3.8 \text{ V}, I_S$ Test Circuit 6	= 5 A	-	62	-	nC
Forward Source to Source Voltage	V _{F(S-S)}	$I_{S} = 3 \text{ A}, V_{GS} = 0 \text{ V}$	Test Circuit 7	_	0.75	1.2	V


Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

ORDERING INFORMATION

Device	Device Marking Package		Shipping (Qty / Packing) [†]		
EFC2K103NUZTDG	PB	WLCSP10, $3.54 \times 1.77 \times 0.140$ (Pb-Free / Halogen Free)	5,000 / Tape & Reel		

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS (Continued)

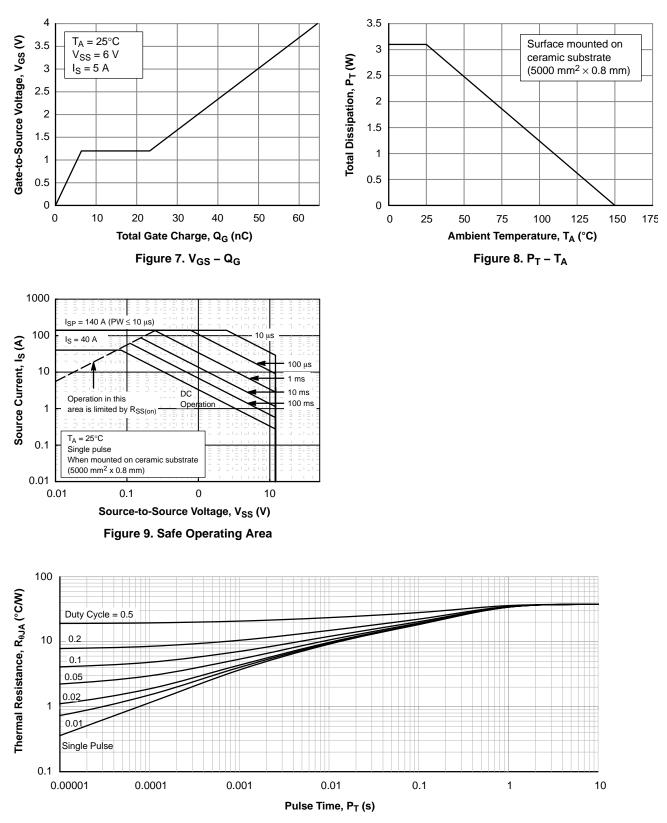
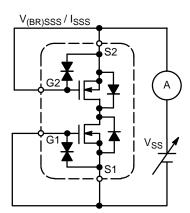
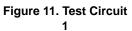
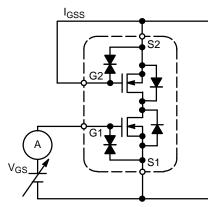
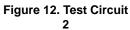




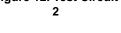
Figure 10. Thermal Response

TEST CIRCUITS ARE EXAMPLES OF MEASURING FET1 SIDE



V_{GS}(th)


When FET1 is measured, Gate and Source of FET2 are short-circuited.


٧_Gş

When FET1 is measured, Gate and Source of FET2 are short-circuited.

IS

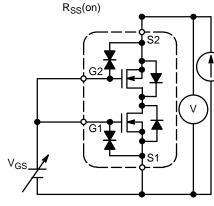
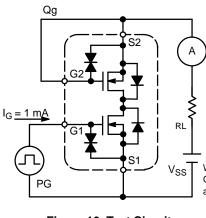
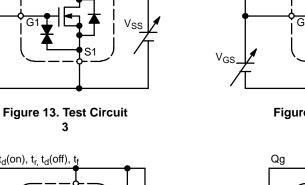
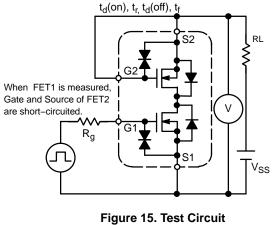
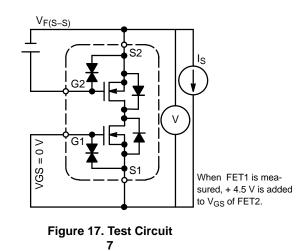




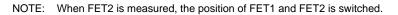
Figure 14. Test Circuit 4



When FET1 is measured, Gate and Source of FET2 are short-circuited.

Figure 16. Test Circuit 6




A

3

NOTE: Since the EFC2K103NUZ is a MOSFET product, please avoid using this device in the vicinity of highly charged objects. Please contact sales for use except the designated application.

onsemi

WLCSP10, 3.54x1.77x0.14 CASE 567XB **ISSUE O** DATE 09 OCT 2018 Α NDTES: В DIMENSIONING AND TOLERANCING PER 1. ASME Y14.5M, 1994. PIN A1 2. CONTROLLING DIMENSION: MILLIMETERS REFERENCE MILLIMETERS DIM MIN. NDM. MAX. Α 0.11 0.14 0.17 D A3 0.04 REF 0.22 0.25 b 0.28 b1 0.17 0.20 0.23 1.29 b2 1.32 1.35 D 3.51 3.54 3.57 Е 1.74 1.77 1.80 TOP VIEW e 0.45 BSC e1 0.35 BSC DETAIL A . BACKSIDE e2 0.80 BSC COATING -A3 1.035 BSC e3 // 0.03 C □ 0.03 C SEATING Ċ SIDE VIEW DETAIL A 0.45 PITCH e 0.35 0.35 le1 e1 PITCH PITCH 5 4 2 -8X b2 **♦**0.05**₩**CAB 2X Ø0.25 8X 1.32 2X Øb 0.05@CAB Æ Ŧ Ŧ 8 1.035 le3 PITCH ŧ 8X 0.20 8X b1 0.050 CAB 6 0.80 e2 PITCH BOTTOM VIEW RECOMMENDED MOUNTING FOOTPRINT GENERIC XXXX = Specific Device Code **MARKING DIAGRAM*** = Assembly Location А Y = Year *This information is generic. Please refer to XXXXX• = Work Week W device data sheet for actual part marking. AYWZZ-ΖZ = Assembly Lot Code Pb-Free indicator, "G" or microdot "■", may = Pb-Free Package or may not be present. Some products may (Note: Microdot may be in either location) not follow the Generic Marking. Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. **DOCUMENT NUMBER:** 98AON98952G **DESCRIPTION:** WLCSP10, 3.54x1.77x0.14 PAGE 1 OF 1 onsemi and OnSemi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. **onsemi** makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation

special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>