CS5231-3

500 mA, 3.3 V Linear Regulator with Auxiliary Control

The CS5231-3 combines a three-terminal linear regulator with circuitry controlling an external PFET transistor thus managing two input supplies. The part provides a 3.3 V regulated output either from the main 5.0 V supply or a 3.3 V auxiliary that switches on when the 5.0 V supply is not present. This delivers constant, uninterrupted power to the load. The CS5231-3 meets Intel’s “Instantly Available” power requirements which follows from the “Advanced Configuration and Power Interface” (ACPI) standards developed by Intel, Microsoft and Toshiba.

The CS5231-3 linear regulator provides a fixed 3.3 V output at 500 mA with an overall accuracy of ±2.0%. The internal NPN–PNP composite pass transistor provides a low dropout voltage and requires less supply current than a straight PNP design. Full protection with both current limit and thermal shutdown is provided.

Designed for low reverse current, the IC prevents excessive current from flowing from VOUT to either VIN or ground when the regulator input voltage is lower than the output voltage.

The CS5231-3 can be used to provide power to an ASIC on a PCI Network Interface Card (NIC). When the system enters a Sleep State and the 5.0 V input drops below 4.4 V, the AuxDrv control signal on the CS5231-3 is activated turning on the external PFET. This switches the supply source from the 5.0 V input to the 3.3 V input through the PFET, guaranteeing a constant 3.3 V output to the ASIC that is “glitch free.”

The CS5231-3 is available in two package types: the D²PAK–5 (TO263) package and the SOIC–8 4-Lead–fused (DF) package. Other applications include desktop computers, power supplies with multiple input sources and PCMCIA/PCI interface cards.

Features

- Linear Regulator
 - 3.3 V ± 2.0% Output Voltage
 - 3.0 mA Quiescent Current @ 500 mA
 - Fast Transient Response
 - Current Limit Protection
 - Thermal Shutdown with Hysteresis
 - 450 µA Reverse Output Current
- System Power Management
 - Auxiliary Supply Control
 - “Glitch Free” Transition Between Two Supplies
- Internally Fused Leads in SOIC–8 Package

ORDERING INFORMATION

<table>
<thead>
<tr>
<th>Device</th>
<th>Package</th>
<th>Shipping</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS5231–3GDP5</td>
<td>D²PAK–5</td>
<td>50 Units/Rail</td>
</tr>
<tr>
<td>CS5231–3GDP5R</td>
<td>D²PAK–5</td>
<td>750 Tape & Reel</td>
</tr>
<tr>
<td>CS5231–3GDF8</td>
<td>SOIC–8</td>
<td>95 Units/Rail</td>
</tr>
<tr>
<td>CS5231–3GDF8R</td>
<td>SOIC–8</td>
<td>2500 Tape & Reel</td>
</tr>
</tbody>
</table>

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
Figure 1. Block Diagram

ABSOLUTE MAXIMUM RATINGS*

<table>
<thead>
<tr>
<th>Rating</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Operating Junction Temperature</td>
<td>150</td>
<td>°C</td>
</tr>
<tr>
<td>Storage Temperature Range</td>
<td>−65 to +150</td>
<td>°C</td>
</tr>
<tr>
<td>Lead Temperature Soldering: Reflow: (SMD styles only) (Note 1)</td>
<td>230 peak</td>
<td>°C</td>
</tr>
<tr>
<td>ESD Damage Threshold (Human Body Model)</td>
<td>2.0</td>
<td>kV</td>
</tr>
</tbody>
</table>

1. 60 second maximum above 183°C.

*The maximum package power dissipation must be observed.

ABSOLUTE MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>Pin Name</th>
<th>Pin Symbol</th>
<th>(V_{\text{MAX}})</th>
<th>(V_{\text{MIN}})</th>
<th>(I_{\text{SOURCE}})</th>
<th>(I_{\text{SINK}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC Power Input</td>
<td>(V_{\text{IN}})</td>
<td>14 V</td>
<td>−0.3 V</td>
<td>100 mA</td>
<td>Internally Limited</td>
</tr>
<tr>
<td>Output Voltage</td>
<td>(V_{\text{OUT}})</td>
<td>6.0 V</td>
<td>−0.3 V</td>
<td>Internally Limited</td>
<td>100 mA</td>
</tr>
<tr>
<td>Auxiliary Drive Output</td>
<td>(\text{AuxDrv})</td>
<td>14 V</td>
<td>−0.3 V</td>
<td>10 mA</td>
<td>50 mA</td>
</tr>
<tr>
<td>IC Ground</td>
<td>(\text{GND})</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>
ELECTRICAL CHARACTERISTICS

(0°C < T_A < 70°C; 0°C < T_J < 125°C; 4.75 V ≤ V_{CC} < 6.0 V; C_{OUT} ≥ 10 nF with ESR < 1.0 Ω, I_{OUT} = 10 mA; unless otherwise specified.)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Test Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear Regulator</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output Voltage</td>
<td>$10 \text{ mA} < I_{OUT} < 500 \text{ mA.}$</td>
<td>3.234 (− 2%)</td>
<td>3.3</td>
<td>3.366 (+ 2%)</td>
<td>V</td>
</tr>
<tr>
<td>Line Regulation</td>
<td>$I_{OUT} = 10 \text{ mA; } V_{IN} = 4.75 \text{ V to 6.0 V}$</td>
<td>−</td>
<td>1.0</td>
<td>5.0</td>
<td>mV</td>
</tr>
<tr>
<td>Load Regulation</td>
<td>$V_{IN} = 5.0 \text{ V; } I_{OUT} = 10 \text{ mA to 500 mA}$</td>
<td>−</td>
<td>5.0</td>
<td>15 mV</td>
<td></td>
</tr>
<tr>
<td>Ground Current</td>
<td>$I_{OUT} = 10 \text{ mA}$</td>
<td>−</td>
<td>2.0</td>
<td>3.0</td>
<td>mA</td>
</tr>
<tr>
<td>Reverse Current</td>
<td>$V_{IN} = 0 \text{ V, } V_{OUT} = 3.3 \text{ V}$</td>
<td>−</td>
<td>0.45</td>
<td>1.0</td>
<td>mA</td>
</tr>
<tr>
<td>Current Limit</td>
<td>$0 \text{ V} < V_{OUT} < 3.2 \text{ V}$</td>
<td>0.55</td>
<td>0.85</td>
<td>1.2 A</td>
<td></td>
</tr>
<tr>
<td>Thermal Shutdown</td>
<td>Note 2</td>
<td>150</td>
<td>180</td>
<td>210 °C</td>
<td></td>
</tr>
<tr>
<td>Thermal Shutdown Hysteresis</td>
<td>Note 2</td>
<td>−</td>
<td>25 °C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Auxiliary Drive</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upper V_{IN} Threshold</td>
<td>Increase V_{IN} until regulator turns on and AuxDrv drives high</td>
<td>4.35</td>
<td>4.5</td>
<td>4.65 V</td>
<td></td>
</tr>
<tr>
<td>Lower V_{IN} Threshold</td>
<td>Decrease V_{IN} until regulator turns off and AuxDrv drives low</td>
<td>4.25</td>
<td>4.4</td>
<td>4.55 V</td>
<td></td>
</tr>
<tr>
<td>V_{IN} Threshold Hysteresis</td>
<td></td>
<td>−</td>
<td>75</td>
<td>100</td>
<td>125 mV</td>
</tr>
<tr>
<td>Output Low Voltage</td>
<td>$I_{AuxDrv} = 100 \mu\text{A, } 1.0 \text{ V} < V_{IN} < 4.5 \text{ V}$</td>
<td>−</td>
<td>0.1</td>
<td>0.4 V</td>
<td></td>
</tr>
<tr>
<td>Output Low Peak Voltage</td>
<td>Increase V_{IN} from 0V to 1.0 V. Record peak AuxDrv output voltage</td>
<td>−</td>
<td>0.65</td>
<td>0.9 V</td>
<td></td>
</tr>
<tr>
<td>AuxDrv Current Limit</td>
<td>$V_{AuxDrv} = 1.0 \text{ V; } V_{IN} = 4.0 \text{ V}$</td>
<td>0.5</td>
<td>6.0</td>
<td>25 mA</td>
<td></td>
</tr>
<tr>
<td>Response Time</td>
<td>Step V_{IN} from 5.0 V to 4.0 V, measure time for V_{AuxDrv} to drive low. Note 2</td>
<td>−</td>
<td>1.0</td>
<td>10 μs</td>
<td></td>
</tr>
<tr>
<td>Pull–Up/Down Resistance</td>
<td>$V_{IN} = 0 \text{ V and } V_{IN} > 4.7 \text{ V}$</td>
<td>5.0</td>
<td>10</td>
<td>25 kΩ</td>
<td></td>
</tr>
</tbody>
</table>

2. Guaranteed by design, not 100% production tested. Thermal shutdown is 100% functionally tested at wafer probe.

PACKAGE PIN DESCRIPTION

<table>
<thead>
<tr>
<th>Package Lead #</th>
<th>D²PAK–5</th>
<th>SOIC–8</th>
<th>Lead Symbol</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>NC</td>
<td></td>
<td>No connection.</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>V_{IN}</td>
<td></td>
<td>Input voltage.</td>
</tr>
<tr>
<td>3, Tab</td>
<td>2, 3, 6, 7</td>
<td>GND</td>
<td></td>
<td>Ground and IC substrate connection.</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>V_{OUT}</td>
<td></td>
<td>Regulated output voltage.</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>AuxDrv</td>
<td></td>
<td>Output used to control an auxiliary supply voltage. This lead is driven low if V_{IN} is less than 4.5 V, and is otherwise pulled up to V_{IN} through an internal 10 kΩ resistor.</td>
</tr>
</tbody>
</table>

http://onsemi.com
TYPICAL PERFORMANCE CHARACTERISTICS

Figure 2. Output Voltage vs. Junction Temperature

Figure 3. Line Regulation vs. IOUT Over Temperature

Figure 4. Load Regulation vs. IOUT Over Temperature

Figure 5. Reverse Current vs. Junction Temperature

Figure 6. VOUT vs. IOUT Over Junction Temperature

Figure 7. VIN Thresholds vs. Junction Temperature
Figure 8. Ground Current vs. Load Current

Figure 9. Region of Stable Operation

Figure 10. AuxDrv Current Limit vs. Junction Temperature

Figure 11. Transient Response

Figure 12. Application Circuit
APPLICATION INFORMATION

THEORY OF OPERATION

The CS5231–3 is a fixed 3.3 V linear regulator that contains an auxiliary drive control feature. When V_{IN} is greater than the typical 4.5 V threshold, the IC functions as a linear regulator. It provides up to 500 mA of current to a load through a composite PNP–NPN pass transistor. An output capacitor greater than 10 μF with equivalent series resistance less than 1.0 Ω is required for compensation. More information is provided in the Stability Considerations section.

The CS5231–3 provides an auxiliary drive feature that allows a load to remain powered even if the V_{IN} supply for the IC is absent. An external p-channel FET is the only additional component required to implement this function if an auxiliary power supply is available. The PFET gate is connected to the AuxDrv lead. The PFET drain is connected to the auxiliary power supply, and the PFET source is connected to the load. The polarity of this connection is very important, since the PFET body diode will be connected between the load and the auxiliary supply. If the PFET is connected with its drain to the load and its source to the supply, the body diode will be forward–biased if the auxiliary supply is turned off. This will result in the linear regulator providing current to everything on the auxiliary supply rail.

The AuxDrv lead is internally connected to a 10 kΩ resistor and to a saturating NPN transistor that acts as a switch. If the V_{IN} supply is off, the AuxDrv output will connect the PFET gate to ground through the 10 kΩ resistor, and the PFET will conduct current to the load.

As the V_{IN} supply begins to rise, the AuxDrv lead will also rise until it reaches a typical voltage of about 650 mV. The NPN transistor connected to the AuxDrv lead will saturate at this point, and the gate of the PFET will be pulled down to a typical voltage of about 100 mV. The PFET will continue to conduct current to the load.

The V_{IN} supply voltage will continue to rise, but the linear regulator output is disabled until V_{IN} reaches a typical threshold of 4.5 V. During this time, the load continues to be powered by the auxiliary driver. Once the 4.5 V V_{IN} threshold is reached, the saturating NPN connected to the AuxDrv lead turns off. The on–chip 10 kΩ pull–up resistor will pull the PFET gate up to V_{IN}, thus turning the PFET off. The linear regulator turns on at the same time. An external compensation capacitor is required for the linear regulator to be stable, and this capacitance also serves as a charge reservoir to minimize any “glitching” that might result during the supply changeover. Hysteresis is present in the AuxDrv circuitry, requiring V_{IN} to drop by 100 mV (typical) after the linear regulator is providing power to the load before the AuxDrv circuitry can be re–enabled.

![Figure 13. Initial Power-Up, V_{AUX} Not Present $R_{OUT} = 8.8 \Omega$](http://onsemi.com)

$\text{I}_{OUT} = \text{STARTUP} \ 375 \text{ mA}$
$V_{AUX} = 3.3 \text{ V}$

![Figure 14. Power-Up, $V_{AUX} = 3.3 \text{ V}$. Note the “Oscillatory Performance” as the Linear Regulator Changes the V_{OUT} Node. $\text{I}_{OUT} \times R_{DS(ON)} = 130 \text{ mV}$](http://onsemi.com)

$\text{I}_{OUT} = 375 \text{ mA}$
$V_{AUX} = 3.3 \text{ V}$

![Figure 15. Power-Down, $V_{AUX} = 3.3 \text{ V}$. Again, Note $\Delta V = I \ R_{DS(ON)} = 130 \text{ mV}$](http://onsemi.com)
Figure 16. Power-Up, $V_{AUX} = 3.135\text{\,V}$. The “Oscillatory Performance” Mode Lasts Longer Because the Difference Between V_{AUX} and 3.3 is Greater

![Graph showing power-up conditions.]

$I_{OUT} = 375\text{\,mA} \quad V_{AUX} = 3.135\text{\,V}$

Figure 17. Power-Down, $V_{AUX} = 3.135\text{\,V}$. The Difference in Voltage is Now $I_{OUT} \times R_{DS(ON)}$ Plus the Difference in Supply Voltages (3.3 $-$ V_{AUX})

![Graph showing power-down conditions.]

$I_{OUT} = 375\text{\,mA} \quad V_{AUX} = 3.135$

Figure 18. Power-Up, $V_{AUX} = 3.465\text{\,V}$. I_{OUT} is Compensated By Higher Value of V_{AUX}

![Graph showing power-up conditions.]

$I_{OUT} = 375\text{\,mA} \quad V_{AUX} = 3.465$

Figure 19. Power-Down, $V_{AUX} = 3.465\text{\,V}$

STABILITY CONSIDERATIONS

The output capacitor helps determine three main characteristics of a linear regulator: startup, transient response and stability.

Startup is affected because the output capacitor must be charged. At initial startup, the V_{IN} supply may not be present, and the output capacitor will be charged through the PFET. The PFET will initially provide current to the load through its body diode. The diode will act as a voltage follower until sufficient voltage is present to turn the FET on. Since most commercial power supplies have a fairly low ramp rate, charging through the body diode should effectively limit in-rush current to the capacitor.

During normal operation, transient load current requirements will be satisfied from the charge stored in the output capacitor until either the linear regulator or the auxiliary supply can respond. Larger values of capacitance will improve transient response, but will also cost more. A linear regulator will respond within microseconds, while an external power supply may take milliseconds to react. The output capacitance will provide the difference in current until this occurs. The result will be an instantaneous voltage change at the output. This change is the product of the current change and the capacitor ESR:

$$\Delta V_{OUT} = \Delta I_{LOAD} \times ESR$$

This limitation directly affects load regulation. Capacitor ESR must be minimized if output voltage must be maintained within tight tolerances. In such a case, it is often advisable to use a parallel network of different types of capacitors. For example, electrolytic capacitors provide high charge storage capacity in a small size, while tantalum capacitors have low ESR. The parallel combination will result in a high capacity, low ESR network. It is also important to physically locate the capacitance network close to the load, and to connect the network to the load with wide PC board traces to minimize the metal resistance.
The CS5231–3 has been carefully designed to be stable for output capacitances greater than 10 μF with equivalent series resistance less than 1.0 Ω. While careful board layout is important, the user should have a stable system if these constraints are met. A graph showing the region of stability for the CS5231–3 is included in the “Typical Performance Characteristics” section of this datasheet.

INPUT CAPACITORS AND THE VIN THRESHOLDS

A capacitor placed on the VIN pin will help to improve transient response. During a load transient, the input capacitor serves as a charge “reservoir,” providing the needed extra current until the external power supply can respond. One of the consequences of providing this current is an instantaneous voltage drop at VIN due to capacitor ESR. The magnitude of the voltage change is again the product of the current change and the capacitor ESR.

It is very important to consider the maximum current step that can exist in the system. If the change in current is large enough, it is possible that the instantaneous voltage drop on VIN will exceed the VIN threshold hysteresis, and the IC will enter a mode of operation resembling an oscillation. As the part turns on, the output current IOUT will increase, reaching current limit during initial charging. Increasing IOUT results in a drop at VIN such that the shutdown threshold is reached. The part will turn off, and the load current will decrease. As IOUT decreases, VIN will rise and the part will turn on, starting the cycle all over again. This oscillatory operation is most likely at initial start-up when the output capacitance is not charged, and in cases where the ramp-up of the VIN supply is slow. It may also occur during the power transition when the regulator turns on and the PFET turns off. A 15 ms delay exists between turn-on of the regulator and the AuxDrv pin pulling the gate of the PFET high. This delay prevents “chatter” during the power transitions. During this interval, the linear regulator will attempt to regulate the output voltage at 3.3 V. If the output voltage is significantly below 3.3 V, the IC will go into current limit while trying to raise VOUT. It is a short–lived phenomenon and is mentioned here to alert the user that the condition can exist. It is typically not a problem in applications. Careful choice of the PFET switch with respect to RDS(ON) will minimize the voltage drop which the output must charge through to return to a regulated state. More information is provided in the section on choosing the PFET switch.

If required, using a few capacitors in parallel to increase the bulk charge storage and reduce the ESR should give better performance than using a single input capacitor. Short, straight connections between the power supply and VIN lead along with careful layout of the PCB board ground plane will reduce parasitic inductance effects. Wide VIN and VOUT traces will reduce resistive voltage drops.

CHOOSING THE PFET SWITCH

The choice of the external PFET switch is based on two main considerations. First, the PFET should have a very low turn–on threshold. Choosing a switch transistor with \(V_{GS(ON)} = 1.0 \, \text{V} \) will ensure the PFET will be fully enhanced with only 3.3 V of gate drive voltage. Second, the switch transistor should be chosen to have a low RDS(ON) to minimize the voltage drop due to current flow in the switch. The formula for calculating the maximum allowable on–resistance is

\[
R_{DS(ON)\text{MAX}} = \frac{V_{\text{AUX(MIN)}} - V_{\text{OUT(MIN)}}}{1.5 \times I_{\text{OUT(MAX)}}}
\]

where \(V_{\text{AUX(MIN)}} \) is the minimum value of the auxiliary supply voltage, \(V_{\text{OUT(MIN)}} \) is the minimum allowable output voltage, \(I_{\text{OUT(MAX)}} \) is the maximum output current and 1.5 is a “fudge factor” to account for increases in RDS(ON) due to temperature.

OUTPUT VOLTAGE SENSING

It is not possible to remotely sense the output voltage of the CS5231–3 since the feedback path to the error amplifier is not externally available. It is important to minimize voltage drops due to metal resistance of high current PC board traces. Such voltage drops can occur in both the supply traces and the return traces.

The following board layout practices will help to minimize output voltage errors:

- Always place the linear regulator as close to both load and output capacitors as possible.
- Always use the widest possible traces to connect the linear regulator to the capacitor network and to the load.
- Connect the load to ground through the widest possible traces.
- Connect the IC ground to the load ground trace at the point where it connects to the load.

CURRENT LIMIT

The CS5231–3 has internal current limit protection. Output current is limited to a typical value of 850 mA, even under output short circuit conditions. If the load current drain exceeds the current limit value, the output voltage will be pulled down and will result in an out of regulation condition. The IC does not contain circuitry to report this fault.

THERMAL SHUTDOWN

The CS5231–3 has internal temperature monitoring circuitry. The output is disabled if junction temperature of the IC reaches 180°C. Thermal hysteresis is typically 25°C and allows the IC to recover from a thermal fault without the
need for an external reset signal. The monitoring circuitry is located near the composite PNP–NPN output transistor, since this transistor is responsible for most of the on–chip power dissipation. The combination of current limit and thermal shutdown will protect the IC from nearly any fault condition.

REVERSE CURRENT PROTECTION

During normal system operation, the auxiliary drive circuitry will maintain voltage on the V\text{OUT} pin when V\text{IN} is absent. IC reliability and system efficiency are improved by limiting the amount of reverse current that flows from V\text{OUT} to ground and from V\text{OUT} to V\text{IN}. Current flows from V\text{OUT} to ground through the feedback resistor divider that sets up the output voltage. This resistor can range in value from 6.0 kΩ to about 10 kΩ and roughly 500 μA will flow in the typical case. Current flow from V\text{OUT} to V\text{IN} will be limited to leakage current after the IC shuts down. On–chip RC time constants are such that the output transistor should be turned off well before V\text{IN} drops below the V\text{OUT} voltage.

CALCULATING POWER DISSIPATION AND HEATSINK REQUIREMENTS

Most linear regulators operate under conditions that result in high on–chip power dissipation. This results in high junction temperatures. Since the IC has a thermal shutdown feature, ensuring the regulator will operate correctly under normal conditions is an important design consideration. Some heatsinking will usually be required.

Thermal characteristics of an IC depend on four parameters: ambient temperature (T\text{A} in °C), power dissipation (P\text{D} in watts), thermal resistance from the die to the ambient air (θ\text{JA} in °C per watt) and junction temperature (T\text{J} in °C). The maximum junction temperature is calculated from the formula below:

$$T\text{J(MAX)} = T\text{A(MAX)} + (\theta\text{JA} \times P\text{D(MAX)})$$

Maximum ambient temperature and power dissipation are determined by the design, while θ\text{JA} is dependent on the package manufacturer. The maximum junction temperature for operation of the CS5231–3 within specification is 150°C. The maximum power dissipation of a linear regulator is given as

$$P\text{D(MAX)} = \frac{(V\text{IN(MAX)} – V\text{OUT(MIN)})}{I\text{LOAD(MAX)} + V\text{IN(MAX)}} \times I\text{GND(MAX)}$$

where I\text{GND(MAX)} is the IC bias current.

It is possible to change the effective value of θ\text{JA} by adding a heatsink to the design. A heatsink serves in some manner to raise the effective area of the package, thus improving the flow of heat from the package into the surrounding air. Each material in the path of heat flow has its own characteristic thermal resistance, all measured in °C per watt. The thermal resistances are summed to determine the total thermal resistance between the die junction and air. There are three components of interest: junction–to–case thermal resistance (θ\text{JC}), case–to–heatsink thermal resistance (θ\text{CS}) and heatsink–to–air thermal resistance (θ\text{SA}). The resulting equation for junction–to–air thermal resistance is

$$\theta\text{JA} = \theta\text{JC} + \theta\text{CS} + \theta\text{SA}$$

The value of θ\text{JC} both packages of the CS5231–3 are provided in the Packaging Information section of this data sheet. The value of θ\text{CS} can be considered zero, since heat is conducted out of the D²PAK package by the IC leads and the tab, and out of the SOIC–8 package by its IC leads that are soldered directly to the PC board.

Modification of θ\text{SA} is the primary means of thermal management. For surface mount components, this means modifying the amount of trace metal that connects to the IC.

The thermal capacity of PC board traces is dependent on how much copper area is used, whether or not the IC is in direct contact with the metal, whether or not the metal surface is coated with some type of sealant, and whether or not there is airflow across the PC board. The chart provided below shows heatsinking capability of a square, single sided copper PC board trace. The area is given in square millimeters, and it is assumed there is no airflow across the PC board.

Figure 20. Thermal Resistance Capability of Copper PC Board Metal Traces

TYPICAL D²PAK PC BOARD HEATSINK DESIGN

A typical design of the PC board surface area needed for the D²PAK package is shown on page 11. Calculations were made assuming V\text{IN(MAX)} = 5.25 V, V\text{OUT(MIN)} = 3.266 V, I\text{OUT(MAX)} = 500 mA, I\text{GND(MAX)} = 5.0 mA and T\text{A} = 70°C.

$$P\text{D} = (5.25 V – 3.266 V) \times 0.5 A$$

$$+ (5.25 V)(0.005 A) = 1018 mW$$

Maximum temperature rise

$$\Delta T = T\text{J(MAX)} – T\text{A} = 150°C – 70°C = 80°C$$

$$\theta\text{JA(worst case)} = \Delta T/P\text{D} = 80°C/1.018 W = 78.56°C/W$$
First, we determine the need for heatsinking. If we assume the maximum $\theta_{JA} = 50 \degree C/W$ for the D²PAK, the maximum temperature rise is found to be

$$\Delta T = PD \times \theta_{JA} = 1.018 W \times 50 \degree C/W = 50.9 \degree C$$

This is less than the maximum specified operating junction temperature of 125°C, and no heatsinking is required. Since the D²PAK has a large tab, mounting this part to the PC board by soldering both tab and leads will provide superior performance with no PC board area penalty.

TYPICAL FUSED SOIC–8 DESIGN

We first determine the need for a heat sink for the SOIC–8 package at a load of 500 mA. Using the dissipation from the D²PAK example of 1018 mW and the θ_{JA} of the SOIC–8 package of $110^\circ C/W$ gives a temperature rise of $112^\circ C$. Adding this to an ambient temperature of $70^\circ C$ gives an additional temperature rise of $82^\circ C$.

The thermal resistance from the die to the leads (case) is $25^\circ C/W$. Adding these two numbers gives the allowable thermal resistance from case to ambient:

$$\theta_{CA} = \theta_{JA} - \theta_{JC} = 79.6^\circ C/W - 25^\circ C/W = 54.6^\circ C/W$$

We calculate the thermal resistance allowed from junction to air:

$$\theta_{JA\text{(worst case)}} = \Delta T_{JA}/PD = 80^\circ C/1.018 W = 79.6^\circ C/W$$

The thermal resistance from the die to the leads (case) is $25^\circ C/W$. Subtracting these two numbers gives the allowable thermal resistance from case to ambient:

$$\theta_{CA} = \theta_{JA} - \theta_{JC} = 79.6^\circ C/W - 25^\circ C/W = 54.6^\circ C/W$$

The thermal resistance of this copper area will be $54.6^\circ C/W$. We now look at Figure 20 and find the PCB trace area that will be less than $54.5^\circ C/W$. Examination shows that 750 mm2 of copper will provide cooling for this part. This would be the SOIC–8 part with the center 4 ground leads soldered to pads in the center of a copper area about 27 mm \times 27 mm. A lower dissipation or the addition of air-flow could result in a smaller required surface area.

DESCRIPTION

The CS5231–3 application circuit has been implemented as shown in the following pages. The schematic, bill of materials and printed circuit board artwork can be used to build the circuit. The design is very simple and consists of two capacitors, a p–channel FET and the CS5231–3. Five turret pins are provided for connection of supplies, meters, oscilloscope probes and loads. The CS5231–3 power supply management solution is implemented in an area less than 1.5 square inches. Due to the simplicity of the design, output current must be derated if the CS5231–3 is operated at V$_{IN}$ voltages greater than 7.0 V. Figure 21 provides the derating curve on a maximum power dissipation if heatsink is added. Operating at higher power dissipation without CS5231–3 heatsink may result in a thermal shutdown condition.

![Figure 21. Demo Board Output Current Derating vs. V_{IN}](http://onsemi.com)

The V_{IN} Connection

The V_{IN} connection is denoted as such on the PC board. The maximum input voltage to the IC is 14 V before damage to the IC is possible. However, the specification range for the IC is $4.75 V < V_{IN} < 6.0 V$.

The GND Connection

The GND connection ties the IC power return to two turret pins. The extra turret pin provides for connection of multiple instrument grounds to the demonstration board.

The AuxDrv Connection

The AuxDrv lead of the CS5231–3 is connected to the gate of the external PFET. This connection is also brought to a turret pin to allow easy connection of an oscilloscope probe for viewing the AuxDrv waveforms.

The V_{AUX} Connection

The V_{AUX} turret pin provides a connection point between an external 3.3 V supply and the PFET drain.

The V_{OUT} Connection

The V_{OUT} connection is tied to the V_{OUT} lead of the CS5231–3 and the PFET source. This point provides a convenient point at which some type of lead may be applied.

![Figure 22. Application Circuit Schematic](http://onsemi.com)
PC Board Layout Artwork
The PC Board is a single layer copper design. The layout artwork is reproduced at actual size below.

![Top Copper Layer Diagram](image)

![Top Silk Screen Layer Diagram](image)

Test Description
The startup and supply transition waveforms shown in Figures 13 through 19 were obtained using the application circuit board with a resistive load of 8.8 Ω. This provides a DC load of 375 mA when the regulated output voltage is 3.3 V. A standard 2.0 A bench supply was used to provide power to the application circuit. The transient response waveforms shown in the Typical Performance Characteristics section were obtained by switching a 6.3 Ω resistor across the output.

Temperature Performance
The graph below shows thermal performance for the CS5231–3 across the normal operating output current range.

![Package Temperature vs. Load Current](image)

PFET R_{DS(ON)} Performance
The graph provided below show typical R_{DS(ON)} performance for the PFET. The data is provided as V_{DS} vs I_{OUT} for different values of V_{AUX}.

![PFET V_{DS} vs. I_{OUT}](image)

APPLICATIONS CIRCUIT BILL OF MATERIALS

<table>
<thead>
<tr>
<th>Ref des</th>
<th>Description</th>
<th>Part Number</th>
<th>Manufacturer</th>
<th>Contact Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1, C2</td>
<td>33 μF, 16 V tantalum capacitors</td>
<td>TAJD336K016</td>
<td>AVX Corp</td>
<td>www.avxcorp.com</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1–843–448–941</td>
</tr>
<tr>
<td>Q1</td>
<td>p–channel FET transistor</td>
<td>MGSF1P02ELT1</td>
<td>ON Semiconductor</td>
<td>http://onsemi.com</td>
</tr>
<tr>
<td>U1</td>
<td>Linear regulator with auxiliary</td>
<td>CS5231–3DPS</td>
<td>ON Semiconductor</td>
<td>http://onsemi.com</td>
</tr>
<tr>
<td>T1–T6</td>
<td>Turret pins</td>
<td>40F6023</td>
<td>Newark Electronics</td>
<td>www.newark.com</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1–800–463–9275</td>
</tr>
</tbody>
</table>
For D²PAK Outline and Dimensions – Contact Factory
PACKAGING DIMENSIONS

SOIC−8
DF SUFFIX
CASE 751−07
ISSUE AA

NOTES:
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.
6. 751−01 THRU 751−06 ARE OBSOLETE. NEW STANDARD IS 751−07.

<table>
<thead>
<tr>
<th>SOLDERING FOOTPRINT</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>PACKAGE THERMAL DATA</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>D^2PAK−5</th>
<th>SOIC−8</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_{iJC}</td>
<td>Typical</td>
<td>2.5</td>
<td>25</td>
</tr>
<tr>
<td>R_{iJA}</td>
<td>Typical</td>
<td>10−50*</td>
<td>110</td>
</tr>
</tbody>
</table>

*Depending on thermal properties of substrate. R_{iJA} = R_{iJC} + R_{iCA}.

http://onsemi.com