ON Semiconductor

Is Now

Onsemi

To learn more about onsemi[™], please visit our website at <u>www.onsemi.com</u>

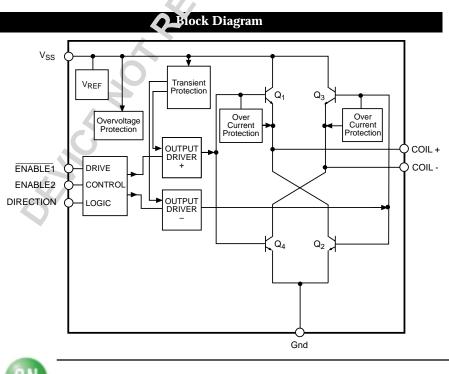
onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product factures, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and asfety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or by customer's technical experts. onsemi products and actal performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiari

2A H-Bridge Driver

Description

The CS3720 is high current (2A typ) bidirectional DC motor driver. The H-bridge output stage consists of two pairs of power NPN transistors, each with a V_{SAT} =2.3V at I_{OUT} =2A (typ).

The three TTL compatible inputs, ENABLE1, ENABLE2, and DIREC-TION <u>control the</u> output stage. When ENABLE1 is low and


ENABLE2 is high, DIRECTION determines which way current flows through the motor coil. Any other combination of ENABLE settings disables the outputs.

The CS3720 is protected against overvoltage fault conditions. If a fault condition is detected, the IC shuts down.

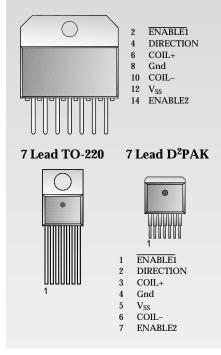
Rating

Absolute N ximun

DC Input Voltage	
Transient Input Voltage	-0.3 to 74V
Junction Temperature Range	-40°C to +150°C
Storage Temperature Range	65°C to +150°C
Lead Temperature Soldering	

December, 2001 - Rev. 5

ON Semiconductor 2000 South County Trail, East Greenwich, RI 02818 Tel: (401)885–3600 Fax: (401)885–5786 N. American Technical Support: 800-282-9855 Web Site: www.cherry–semi.com


Features

- High Current (2A typ) Output
- TTL compatible DIRECTION Control
- Fault Protection Overvoltage

Load Dump Protection to 74V

Package Options

7 Lead Power SIP

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Output Stage					
Quiescent Current	I _{OUT} = 0mA; ENABLE1 = DIRECTION = High ENABLE2 = Low			10	mA
Output Saturation Voltage	$I_{OUT} = 2A$ $I_{OUT} = 500mA$			3.2 2.6	V V
Output Leakage Current	$I_{OUT} = 0mA$			20	μA
Current Limit			3.0		А
Logic Control Functions					
High Level Input Voltage		2.0			V
Low Level Input Voltage				0.8	V
High Level Input Current				10	μΑ
Low Level Input Current		-250			μΑ
Turn on Delay Guaranteed by design	$R_{LOAD} = 30\Omega; Coil = 5mH;$ $C_{LOAD} = 15pF$		5	50	μs
Turn off Delay	$R_{LOAD} = 30\Omega$; Coil = 5mH;			50	μs

■ Fault Protection Functions

Guaranteed by design

Overvoltage Shutdown $I_{OUT} = 500 \text{mA}$ 18.0 21.5	V	
--	---	--

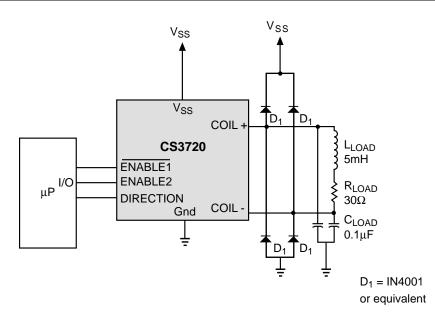
 $C_{LOAD} = 15 pF$

Package Lead Description					
PACKAGE LEAD#		LEAD SYMBOL	FUNCTION		
15 Lead Power SIP	7 Lead TO-220	7 Lead D²PAK			
2	1	1	ENABLE1	Enables output when held low and ENABLE 2 = High	
4	2	2	DIRECTION	Determines the direction of current flow through COIL+ and COIL- as long as ENABLE1 = Low and ENABLE2 = High	
6	3	3	COIL+	Positive Output of H bridge to coil	
8	4	4	Gnd	Ground connection	
12	5	5	V _{SS}	Supply voltage for IC	
10	6	6	COIL-	Negative Output of H bridge to coil	
14	7	7	ENABLE2	Enables output when held high and $\overline{\text{ENABLE 1}}$ = Low	

Application Hints

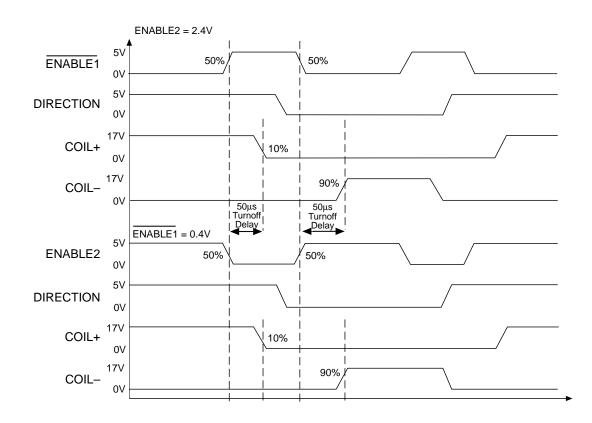
Motor Direction Control

Current flow through the two outputs COIL+ and COILis controlled by the combined settings of ENABLE1, ENABLE2 and DIRECTION (Table 1). The outputs will be active only when ENABLE1 is low and ENABLE2 is high. When DIRECTION is high, current flows out of COIL+ and into COIL-. When DIRECTION is low, current flows out of COIL- and into COIL+. For any other combination of ENABLE settings, the outputs are off.


ENABLE1	ENABLE2	DIRECTION	COIL+	COIL-
Low	High	High	High	Low
Low	High	Low	Low	High
High	Х	Х	OFF	OFF
Х	Low	Х	OFF	OFF

5

Table 1. Logical Control Diagram


Application and Test Diagram

CS3720

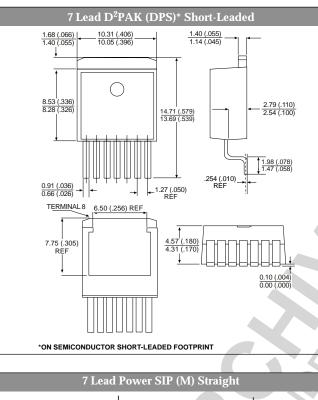
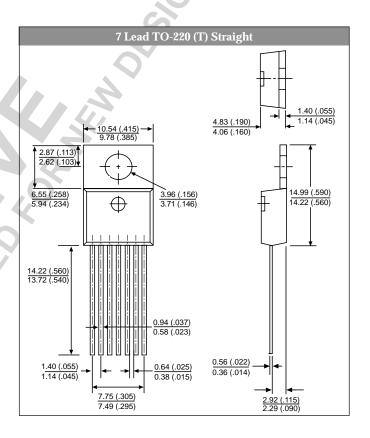

Note: A heatsink is required for 2A operation.

Figure 1. Delay Times for ENABLE and COIL

Package Specification



7 Lead Power SIP (M) Straight 20.02 (.788) 17.50 (.689) 10.69 (.421) 1.1 (.043) 1.1 (.043) 1.1 (.043) 1.1 (.043) 1.1 (.043)1.1 (.043)

Ordering Information				
Part N vo ber	Description			
CS3720XT7	7 Lead TO-220 Straight			
CS3720XTVA7	7 Lead TO-220 Vertical			
CS3720XTHA7	7 Lead TO-220 Horizontal			
CS3720XM7	7 Lead Power SIP Straight			
CS3720XDPS7	7 Lead D ² PAK Short-Leaded			
CS3720XDPSR7	7 Lead D ² PAK Short-Leaded (<i>tape & reel</i>)			

PACKAGE THERMAL DATA

Thermal Data	7L D²PAK	7L TO-220	7L Power SIP			
$R_{\Theta JC}$ typ	2.1	2.1	2.1	°C/W		
$R_{\Theta JA}$ typ	10-50*	50	35	°C/W		
*Depending on thermal properties of c. 'strate. $R_{\Theta JA} = R_{\Theta JC} + R_{\Theta CA}$.						

ON Semiconductor and the ON Logo are trademarks of Semiconductor Components Industries, LLC (SCILLC). ON Semiconductor reserves the right to make changes without further notice to any products herein. For additional information and the latest available information, please contact your local ON Semiconductor representative.