CAT6201, CAV6201B

LDO Regulator - Adjustable CMOS

300 mA, 13 V

Description

The CAT6201/CAV6201B is a 13 V rated 300 mA CMOS low dropout regulator that provides fast response time to load current and line voltage changes in an automotive environment.

CAT6201/CAV6201B features a low RON P–channel pass element with internal control circuitry which prevents reverse current flow should the voltage at VOUT exceed VIN as in the case of the car’s battery voltage accidentally being applied to VOUT.

Thermal protection and current limiting circuitry combine to protect the pass device against faults and abuse. Current limiting is user controlled through a single resistor to ground. A fault output (FLT) provides an alert should an over–current event or thermal shutdown occur.

CAT6201/CAV6201B comes on–line gracefully even though it may be driving heavy capacitive loads thanks to built-in soft-start circuitry. Its output is protected against accidental connection to voltages greater than VIN and will not conduct current backwards into its supply.

CAT6201/CAV6201B is available in 8–pad 2 mm x 3 mm TDFN package.

Features

- Guaranteed 300 mA Continuous Output Current
- Low Dropout Voltage of 250 mV Typical at 300 mA
- Input Voltage Range: 3.3 V to 13.5 V
- User Adjustable Output Voltage
- User Programmable Current Limit
- Fault Output to Indicate Under–voltage, Current Limiting or Thermal Shutdown has Occurred
- Fault Blanking: 3 ms
- VOUT Withstands Battery Fault Voltages of up to 14 V
- Soft–Start Prevents Current Surges
- Stable with Ceramic Output Capacitor
- ±1.5% Output Voltage Initial Accuracy
- ±2.5% Accuracy Over Temperature
- Thermal Protection
- 8 Pad TDFN Package
- CAV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q100 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 10 of this data sheet.
Figure 1. CAT6201/CAV6201B Typical Application

Figure 2. CAT6201/CAV6201B Functional Block Diagram
Table 1. PIN FUNCTION DESCRIPTION

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Pin Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VIN</td>
<td>Supply voltage input</td>
</tr>
<tr>
<td>2</td>
<td>FLT</td>
<td>Fault indicator (active low)</td>
</tr>
<tr>
<td>3</td>
<td>EN</td>
<td>Enable input (active high)</td>
</tr>
<tr>
<td>4</td>
<td>BYP</td>
<td>A capacitor between BYP and GND controls the regulator’s turn–on speed and improves PSRR</td>
</tr>
<tr>
<td>5</td>
<td>GND</td>
<td>Ground reference</td>
</tr>
<tr>
<td>6</td>
<td>ILIM</td>
<td>Current limit control pin</td>
</tr>
<tr>
<td>7</td>
<td>VADJ</td>
<td>Output voltage adjustment</td>
</tr>
<tr>
<td>8</td>
<td>VOUT</td>
<td>LDO Output Voltage</td>
</tr>
</tbody>
</table>

| Pad | – | Backside pad in center of package provides thermal contact for cooling, typically via the PCB ground plane. This pad is electrically active and connected to GND internally. An external Ground connection is not required and the pad may be left floating. |

Table 2. ABSOLUTE MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>Rating</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{IN}, V_{OUT}, EN</td>
<td>0 to 16</td>
<td>V</td>
</tr>
<tr>
<td>All other pins</td>
<td>−0.3 to +6.0</td>
<td>V</td>
</tr>
<tr>
<td>Junction Temperature, T_J</td>
<td>+150</td>
<td>°C</td>
</tr>
<tr>
<td>Power Dissipation, P_D</td>
<td>Internally Limited (Note 1)</td>
<td>mW</td>
</tr>
<tr>
<td>Storage Temperature Range, T_S</td>
<td>−65 to +150</td>
<td>°C</td>
</tr>
<tr>
<td>Lead Temperature (soldering, 5 sec.)</td>
<td>260</td>
<td>°C</td>
</tr>
<tr>
<td>ESD Rating (Human Body Model)</td>
<td>1000</td>
<td>V</td>
</tr>
<tr>
<td>ESD Rating (Machine Model)</td>
<td>200</td>
<td>V</td>
</tr>
</tbody>
</table>

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. The maximum allowable power dissipation at any T_A (ambient temperature) is $P_{D_{max}} = (T_{J_{max}} - T_A) / \theta_{JA}$. Exceeding the maximum allowable power dissipation will result in excessive die temperature, and the regulator will go into thermal shutdown.

Table 3. RECOMMENDED OPERATING CONDITIONS (Note 2)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Range</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{IN}, V_{OUT}, EN</td>
<td>3.3 to 13.5</td>
<td>V</td>
</tr>
<tr>
<td>All other pins</td>
<td>0 to 6.0</td>
<td>V</td>
</tr>
<tr>
<td>Junction Temperature Range, T_J</td>
<td>−40 to +125</td>
<td>°C</td>
</tr>
<tr>
<td>Package Thermal Resistance (SOIC), θ_{JA}</td>
<td>235</td>
<td>°C/W</td>
</tr>
<tr>
<td>Package Thermal Resistance (TDFN), θ_{JA}</td>
<td>92</td>
<td>°C/W</td>
</tr>
</tbody>
</table>

2. The device is not guaranteed to work outside its operating rating.
Pin Function

VIN is the supply pin for both the LDO’s operation and the load the LDO is driving. It is recommended that a 1 \(\mu \)F ceramic bypass capacitor be placed between the VIN pin and ground in close proximity to the device. When using longer connections to the power supply, \(C_{IN} \) value can be increased without limit. The operating input voltage range is from 3.3 V to 13.5 V.

FLT is an active low open–drain output indicating one of 3 fault conditions:

1. Input under–voltage: input is below the intended output voltage
2. Over–current. Brief over–current events are masked by a 3 ms time delay.
 CAT6201/CAV6201B will limit current anytime the load tries to draw more than the maximum allowed, however reporting of this event will occur only if the event lasts longer than the delay timer. Events terminating before the timer reaches its full count are ignored and the timer is reset.
3. Over–temperature shutdown has occurred.

EN is an active HIGH logic level input for switching the regulator’s output between ON and OFF. A weak internal pull down assures that if EN pin is left open, the circuit is disabled.

BYP controls the soft–start feature for the regulator. When large capacitive loads are present at the regulator’s output, enabling the regulator will produce large current surges on the VIN supply line. To reduce these surges the regulator can be turned on gently by connecting a capacitor between the BYP pin and ground. The larger the capacitance value the more slowly \(V_{OUT} \) approaches its programmed value. The table below gives a list of common capacitor values and their resulting turn–on times. If the soft–start feature is not desired, this pin should be left floating.

<table>
<thead>
<tr>
<th>Capacitance [nF]</th>
<th>(I_{ON}) [ms]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.2</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>100</td>
<td>10</td>
</tr>
</tbody>
</table>

GND is the ground reference for the LDO in the TDFN package, center metal pad is internally connected to GND. If electrical contact is made with this pad, it should be to GND and/or the ground plane of the PCB. Connection to the ground plane enhances thermal conductivity drawing heat out of the package and into the surrounding PCB.

ILIM stands for Current Limit and is the control input for setting the point at which the current limit is invoked. \(I_{ILIM} \) is defined as the current at which \(V_{OUT} \) is still within 80% of its nominal value and should not be confused with ISC; the short circuit current, measured at \(V_{OUT} = 0 \) V, which is typically 100 mA greater than \(I_{ILIM} \).

A resistor \(R_{EXT} \) placed between \(I_{ILIM} \) and GND selects the trip current according to a formula:

\[
I_{ILIM} = I_{ILIM0} + \frac{Current_Limit_Factor(CLF)}{R_{EXT}} \quad (eq. 1)
\]

\(I_{ILIM0} \) is the built–in minimum current limit (typically 150 mA), and CLF is a numerical value (typical 30,000 Volts) which relates the allowable load current to a resistance value. The value of this resistor is determined by the following equation:

\[
R_{EXT}(\Omega) = \frac{CLF(V)}{I_{ILIM(A)} - I_{ILIM0(A)}} \quad (eq. 2)
\]

It is recommended that \(I_{ILIM} \) be set to at least 50% higher than the maximum intended continuous \(I_{OUT} \).

Example: Set \(I_{LIMIT} = 600 \) mA

\[
R_{EXT}(\Omega) = \frac{30,000 \, V}{0.6 \, A - 0.15 \, A} = 68 \, K\Omega \quad (eq. 3)
\]

VADJ is the output voltage control pin. A resistor divider placed between \(V_{OUT} \) and GND whose center point connects to VADJ sets the LDO regulator’s output voltage. Typical VADJ value is 1.25 V. The current through the resistor divider can be anywhere between 10 \(\mu \)A and 1 mA. The higher this current is, the lower the noise.

For best performance \(R1 \) and \(R2 \) should have similar temperature coefficients, otherwise output voltage accuracy will be compromised.

\[
V_{OUT} = V_{ADJ} \left(1 + \frac{R1}{R2}\right) \quad (eq. 4)
\]

VOUT is the LDO regulator output. A small 2.2 \(\mu \)F ceramic bypass capacitor is required between \(V_{OUT} \) and ground. For better transient response, its value can be increased to 4.7 \(\mu \)F. This capacitor should be located near the device.

VOUT is protected against short circuits and over–temp operation by internal circuitry. In the event of an over–current, the LDO behaves like a current source, limiting current at the output. The maximum current allowed is set by \(R_{EXT} \), the resistor between \(I_{ILIM} \) and GND. If the load attempts to draw more than the allowed current, \(V_{OUT} \) and \(I_{OUT} \) decrease together and thus limit the total power delivered.

VOUT is protected against the application of voltages greater than VIN. For example, in automotive applications, if CAT6201/CAV6201B is powering a remote load and damage occurs to a wiring harness shorting a powered line, Battery + for instance, to \(V_{OUT} \). CAT6201/CAV6201B will not be damaged by this higher voltage being applied to \(V_{OUT} \).
Table 4. ELECTRICAL CHARACTERISTICS

(VIN = VOUT + 1 V, VEN = High, IOUT = 1 mA, CIN = 1 μF, COUT = 2.2 μF, REXT = 68 kΩ, ambient temperature of 25°C (over recommended operating conditions unless specified otherwise). **Bold numbers** apply for the entire junction temperature range.)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>VIN</td>
<td>Input Voltage</td>
<td></td>
<td>3.3</td>
<td>13.5</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>VOUT</td>
<td>Output Voltage</td>
<td></td>
<td>VADJ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VADJ</td>
<td>ADJ Voltage</td>
<td></td>
<td>1.232</td>
<td>1.250</td>
<td>1.268</td>
<td>V</td>
</tr>
<tr>
<td>IADJ</td>
<td>ADJ Input Current</td>
<td></td>
<td>0.5</td>
<td>2.0</td>
<td></td>
<td>μA</td>
</tr>
<tr>
<td>TCOUT</td>
<td>Output Voltage Temp. Coefficient</td>
<td>IOUT = 10 mA</td>
<td>100</td>
<td></td>
<td></td>
<td>ppm/°C</td>
</tr>
<tr>
<td>VR-LINE</td>
<td>Line Regulation</td>
<td>VOUT + 1 V < VIN < 13.5 V</td>
<td>-0.2</td>
<td>±0.1</td>
<td>+0.2</td>
<td>%/V</td>
</tr>
<tr>
<td>VR-LOAD</td>
<td>Load Regulation</td>
<td>IOUT = 1 mA to 300 mA</td>
<td>0.7</td>
<td>2</td>
<td></td>
<td>%</td>
</tr>
<tr>
<td>VDROP</td>
<td>Dropout Voltage (Note 3)</td>
<td>IOUT = 300 mA</td>
<td>250</td>
<td>350</td>
<td></td>
<td>mV</td>
</tr>
<tr>
<td>IGND</td>
<td>Ground Current</td>
<td>IOUT = 0 mA</td>
<td>100</td>
<td>150</td>
<td></td>
<td>μA</td>
</tr>
<tr>
<td>IGND-SD</td>
<td>Shutdown Ground Current</td>
<td>VEN < 0.4 V</td>
<td>0.5</td>
<td>2</td>
<td></td>
<td>μA</td>
</tr>
<tr>
<td>PSRR</td>
<td>Power Supply Rejection Ratio</td>
<td>f = 1 kHz, CBYP = 10 nF</td>
<td>62</td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>PSRR</td>
<td></td>
<td>f = 20 kHz, CBYP = 10 nF</td>
<td>52</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TON</td>
<td>Turn–On Time</td>
<td>CBYP = 10 nF, VOUT = 0% − 100%</td>
<td>700</td>
<td></td>
<td></td>
<td>μs</td>
</tr>
<tr>
<td>ISC</td>
<td>Output short circuit current</td>
<td>VOUT < 0.8 V, REXT = 68 K</td>
<td>500</td>
<td>650</td>
<td>800</td>
<td>mA</td>
</tr>
<tr>
<td>ISC</td>
<td></td>
<td>VOUT < 0.8 V, ILIM = OPEN</td>
<td>200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ILIM</td>
<td>Output current limit</td>
<td>VOUT = 80% of VOUT measured at a load of 1 mA, REXT = 68 K</td>
<td>400</td>
<td>450</td>
<td>600</td>
<td>mA</td>
</tr>
<tr>
<td>CLF</td>
<td>Current Limit Factor</td>
<td>VOUT < 0.8 V</td>
<td>24</td>
<td>30</td>
<td>36</td>
<td>KV</td>
</tr>
<tr>
<td>tFD</td>
<td>Fault Delay</td>
<td></td>
<td>1.5</td>
<td>3</td>
<td>6</td>
<td>ms</td>
</tr>
<tr>
<td>VIN-UVLO</td>
<td>Under voltage lockout threshold</td>
<td></td>
<td>2.85</td>
<td>3.1</td>
<td>3.25</td>
<td>V</td>
</tr>
<tr>
<td>ESR</td>
<td>ROUT equivalent series resistance</td>
<td></td>
<td>5</td>
<td>500</td>
<td></td>
<td>mΩ</td>
</tr>
</tbody>
</table>

ENABLE INPUT

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>VHI</td>
<td>Logic High Level</td>
<td>VIN = 3.3 to 13.5 V</td>
<td>2</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>VLO</td>
<td>Logic Low Level</td>
<td>VIN = 3.3 to 13.5 V</td>
<td>0.4</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>IEN</td>
<td>Enable Input Current</td>
<td>VEN = 0.4 V</td>
<td>0.15</td>
<td>1</td>
<td></td>
<td>μA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VEN = VIN</td>
<td>3</td>
<td>5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

THERMAL PROTECTION

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSD</td>
<td>Thermal Shutdown</td>
<td></td>
<td>140</td>
<td></td>
<td>°C</td>
</tr>
<tr>
<td>TTHYS</td>
<td>Thermal Hysteresis</td>
<td></td>
<td>10</td>
<td></td>
<td>°C</td>
</tr>
</tbody>
</table>

3. Dropout voltage is defined as the input–to–output differential at which the output voltage drops 2% below its nominal value. During test, the input voltage stays always above the minimum 3.3 V. The given values are for VOUT = 7.5 V.
TYPICAL CHARACTERISTICS (shown for 7.5 V output)

\(V_{IN} = 8.5 \text{ V}, R_1 = 5.1 \text{ k}\Omega, R_2 = 1 \text{ k}\Omega, C_{IN} = 1 \mu\text{F}, C_{OUT} = 2.2 \mu\text{F}, C_{BYP} = 10 \text{ nF}, R_{EXT} = 68 \text{ k}\Omega, \\
\text{FLT not connected, } T_A = 25^\circ\text{C unless otherwise specified.} \)

Figure 3. Dropout Characteristics

Figure 4. Line Regulation

Figure 5. Load Regulation

Figure 6. Adjustable Voltage vs. Temperature

Figure 7. Ground Current vs. Load Current

Figure 8. Ground Current vs. Temperature
TYPICAL CHARACTERISTICS (shown for 7.5 V output)

\(V_{IN} = 8.5 \, V, \, R_1 = 5.1 \, k\Omega, \, R_2 = 1 \, k\Omega, \, C_{IN} = 1 \, \mu F, \, C_{OUT} = 2.2 \, \mu F, \, C_{BYP} = 10 \, nF, \, R_{EXT} = 68 \, k\Omega, \)

FLT not connected, \(T_A = 25^\circ C \) unless otherwise specified.

Figure 9. Output Short–circuit Current vs. Input Voltage

Figure 10. Ground Current vs. Input Voltage

Figure 11. Enable Threshold vs. Input Voltage

Figure 12. Fault Bar Voltage vs. Input Voltage

Figure 13. Output Voltage vs. Load Current

Figure 14. Output Current (Sink) vs. Output Voltage

http://onsemi.com
TYPICAL CHARACTERISTICS (shown for 7.5 V output)

\(V_{IN} = 8.5 \text{ V}, R_1 = 5.1 \text{ k}\Omega, R_2 = 1 \text{ k}\Omega, C_{IN} = 1 \mu \text{F}, C_{OUT} = 2.2 \mu \text{F}, C_{BYP} = 10 \text{ nF}, R_{EXT} = 68 \text{ k}\Omega \)

\(T_A = 25^\circ \text{C} \) unless otherwise specified. All transient characteristics are generated using the evaluation board CAT6201EVAL1.)

Figure 15. Enable Turn–On (No Load)

Figure 16. Enable Turn–On (22 \Omega Load)

Figure 17. Enable Operation (No Load)

Figure 18. Enable Operation (22 \Omega Load)

Figure 19. Load Transient Response
(1 mA to 330 mA)

Figure 20. Fault Operation
\((VIN = 7 \text{ V and 22 \Omega Load})\)
ORDERING INFORMATION

<table>
<thead>
<tr>
<th>Device Order Number</th>
<th>Specific Device Marking</th>
<th>Package Type</th>
<th>Lead Finish</th>
<th>Shipping (Note 5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAT6201VP2−GT3</td>
<td>HKB</td>
<td>TDFN−8</td>
<td>NiPdAu</td>
<td>3,000 / Tape & Reel</td>
</tr>
<tr>
<td>CAV6201BVP2−GT3</td>
<td>HKB</td>
<td>TDFN−8</td>
<td>NiPdAu</td>
<td>3,000 / Tape & Reel</td>
</tr>
</tbody>
</table>

4. For additional package and temperature options, please contact your nearest ON Semiconductor Sales office.
5. For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
NOTES:
2. CONTROLLING DIMENSION: MILLIMETERS.
3. DIMENSION b APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.25MM FROM THE TERMINAL TIP.
4. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.

TDFN8, 2x3, 0.5P
CASE 511AK
ISSUE B
DATE 18 MAR 2015

NOTES:
2. CONTROLLING DIMENSION: MILLIMETERS.
3. DIMENSION b APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.25MM FROM THE TERMINAL TIP.
4. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.

NOTES:
2. CONTROLLING DIMENSION: MILLIMETERS.
3. DIMENSION b APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.25MM FROM THE TERMINAL TIP.
4. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.

NOTES:
2. CONTROLLING DIMENSION: MILLIMETERS.
3. DIMENSION b APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.25MM FROM THE TERMINAL TIP.
4. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.

NOTES:
2. CONTROLLING DIMENSION: MILLIMETERS.
3. DIMENSION b APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.25MM FROM THE TERMINAL TIP.
4. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.

NOTES:
2. CONTROLLING DIMENSION: MILLIMETERS.
3. DIMENSION b APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.25MM FROM THE TERMINAL TIP.
4. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.

NOTES:
2. CONTROLLING DIMENSION: MILLIMETERS.
3. DIMENSION b APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.25MM FROM THE TERMINAL TIP.
4. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.

NOTES:
2. CONTROLLING DIMENSION: MILLIMETERS.
3. DIMENSION b APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.25MM FROM THE TERMINAL TIP.
4. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.

NOTES:
2. CONTROLLING DIMENSION: MILLIMETERS.
3. DIMENSION b APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.25MM FROM THE TERMINAL TIP.
4. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.

NOTES:
2. CONTROLLING DIMENSION: MILLIMETERS.
3. DIMENSION b APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.25MM FROM THE TERMINAL TIP.
4. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.

NOTES:
2. CONTROLLING DIMENSION: MILLIMETERS.
3. DIMENSION b APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.25MM FROM THE TERMINAL TIP.
4. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.

NOTES:
2. CONTROLLING DIMENSION: MILLIMETERS.
3. DIMENSION b APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.25MM FROM THE TERMINAL TIP.
4. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.

NOTES:
2. CONTROLLING DIMENSION: MILLIMETERS.
3. DIMENSION b APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.25MM FROM THE TERMINAL TIP.
4. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.

NOTES:
2. CONTROLLING DIMENSION: MILLIMETERS.
3. DIMENSION b APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.25MM FROM THE TERMINAL TIP.
4. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.

NOTES:
2. CONTROLLING DIMENSION: MILLIMETERS.
3. DIMENSION b APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.25MM FROM THE TERMINAL TIP.
4. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.

NOTES:
2. CONTROLLING DIMENSION: MILLIMETERS.
3. DIMENSION b APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.25MM FROM THE TERMINAL TIP.
4. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.

NOTES:
2. CONTROLLING DIMENSION: MILLIMETERS.
3. DIMENSION b APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.25MM FROM THE TERMINAL TIP.
4. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.

NOTES:
2. CONTROLLING DIMENSION: MILLIMETERS.
3. DIMENSION b APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.25MM FROM THE TERMINAL TIP.
4. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.

NOTES:
2. CONTROLLING DIMENSION: MILLIMETERS.
3. DIMENSION b APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.25MM FROM THE TERMINAL TIP.
4. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.

NOTES:
2. CONTROLLING DIMENSION: MILLIMETERS.
3. DIMENSION b APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.25MM FROM THE TERMINAL TIP.
4. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.

NOTES:
2. CONTROLLING DIMENSION: MILLIMETERS.
3. DIMENSION b APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.25MM FROM THE TERMINAL TIP.
4. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.