onsemi

Plastic Medium-Power Silicon NPN Transistors

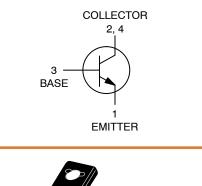
BD135G, BD137G, BD139G

This series of plastic, medium-power silicon NPN transistors are designed for use as audio amplifiers and drivers utilizing complementary or quasi complementary circuits.

Features

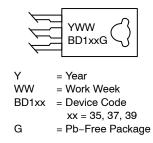
- High DC Current Gain
- BD 135, 137, 139 are complementary with BD 136, 138, 140
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant*

MAXIMUM RATINGS


Rating	Symbol	Value	Unit
Collector-Emitter Voltage BD135G BD137G BD139G	V _{CEO}	45 60 80	Vdc
Collector-Base Voltage BD135G BD137G BD139G	V _{CBO}	45 60 100	Vdc
Emitter-Base Voltage	V _{EBO}	5.0	Vdc
Collector Current	۱ _C	1.5	Adc
Base Current	Ι _Β	0.5	Adc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	P _D	1.25 10	Watts mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	P _D	12.5 100	Watts mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS


Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction-to-Case	$R_{\theta JC}$	10	°C/W
Thermal Resistance, Junction-to-Ambient	$R_{\theta JA}$	100	°C/W

1.5 A POWER TRANSISTORS NPN SILICON 45, 60, 80 V, 12.5 W

MARKING DIAGRAM

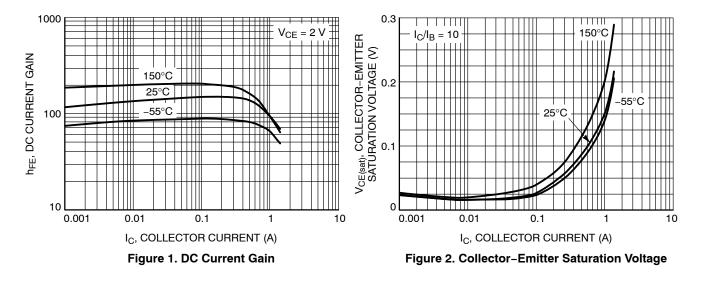
ORDERING INFORMATION

Device	Package	Shipping
BD135G	TO-225 (Pb-Free)	500 Units / Box
BD137G	TO-225 (Pb-Free)	500 Units / Box
BD139G	TO-225 (Pb-Free)	500 Units / Box

DISCONTINUED (Note 1)

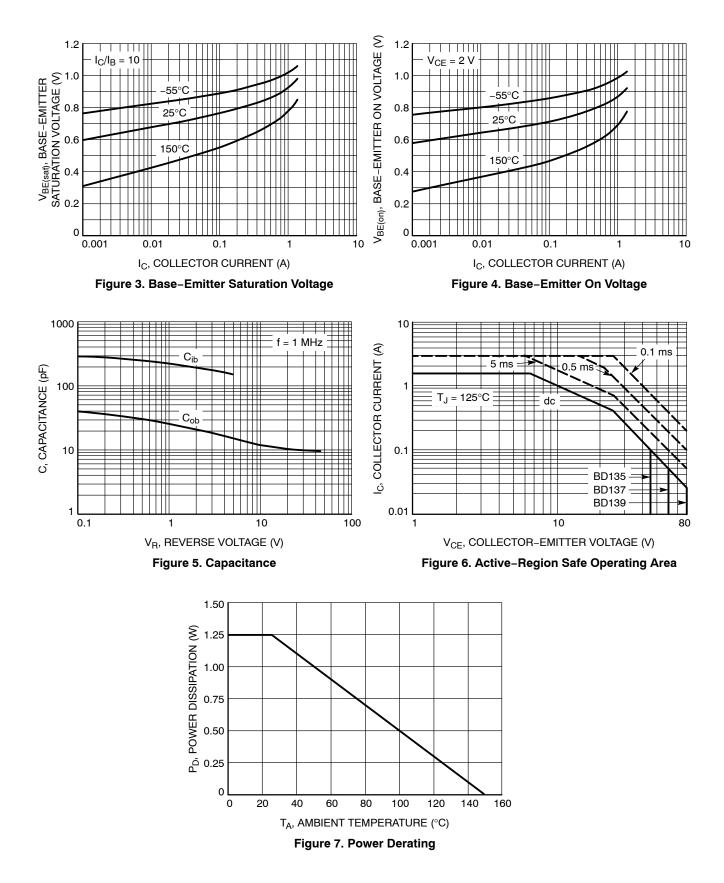
Device	Package	Shipping
BD135TG	TO-225 (Pb-Free)	50 Units / Rail

 DISCONTINUED: These devices are not recommended for new design. Please contact your onsemi representative for information. The most current information on these devices may be available on <u>www.onsemi.com</u>.

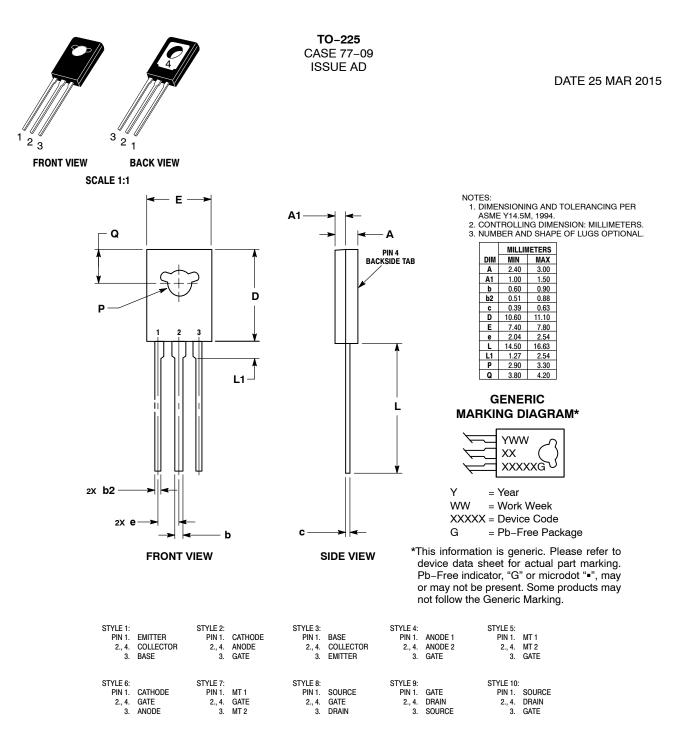

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

BD135G, BD137G, BD139G

Characteristic	Symbol	Min	Max	Unit
$\begin{array}{l} \mbox{Collector-Emitter Sustaining Voltage*} \\ (I_C = 0.03 \mbox{ Adc, } I_B = 0) \\ \mbox{ BD135G} \\ \mbox{ BD137G} \\ \mbox{ BD139G} \end{array}$	BV _{CEO} *	45 60 80	- - -	Vdc
Collector Cutoff Current ($V_{CB} = 30$ Vdc, $I_E = 0$) ($V_{CB} = 30$ Vdc, $I_E = 0$, $T_C = 125^{\circ}C$)	I _{CBO}		0.1 10	μAdc
Emitter Cutoff Current ($V_{BE} = 5.0 \text{ Vdc}, I_C = 0$)	I _{EBO}	-	10	μAdc
$ \begin{array}{l} \text{DC Current Gain} \\ (I_{C} = 0.005 \text{ A}, \text{ V}_{CE} = 2 \text{ V}) \\ (I_{C} = 0.15 \text{ A}, \text{ V}_{CE} = 2 \text{ V}) \\ (I_{C} = 0.5 \text{ A} \text{ V}_{CE} = 2 \text{ V}) \end{array} $	h _{FE} *	25 40 25	250 -	-
Collector-Emitter Saturation Voltage* $(I_C = 0.5 \text{ Adc}, I_B = 0.05 \text{ Adc})$	V _{CE(sat)} *	_	0.5	Vdc
Base-Emitter On Voltage* (I _C = 0.5 Adc, V _{CE} = 2.0 Vdc)	V _{BE(on)} *	-	1	Vdc


Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. *Pulse Test: Pulse Width \leq 300 µs, Duty Cycle \leq 2.0%.

TYPICAL CHARACTERISTICS



BD135G, BD137G, BD139G

TYPICAL CHARACTERISTICS

onsemi

DOCUMENT NUMBER:	98ASB42049B	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	TO-225		PAGE 1 OF 1

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>