General Purpose Transistor
Medium Power, PNP
80 V, 1 A

BCP53M

The BCP53MTW is designed for general purpose amplifier applications. It is housed in DFN2020−3 offering superior thermal performance. The transistor is ideal for medium−power surface mount applications where board space and reliability are at a premium.

Specification Features
- Wettable Flank Package for Optimal Automated Optical Inspection (AOI)
- NSV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC−Q101 Qualified and PPAP Capable
- These Devices are Pb−Free, Halogen Free/BFR Free and are RoHS Compliant

MAXIMUM RATINGS \((T_A = 25^\circ C) \)

<table>
<thead>
<tr>
<th>Rating</th>
<th>Symbol</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collector−Emitter Voltage</td>
<td>(V_{CEO})</td>
<td>−80</td>
<td>Vdc</td>
</tr>
<tr>
<td>Collector−Base Voltage</td>
<td>(V_{CBO})</td>
<td>−100</td>
<td>Vdc</td>
</tr>
<tr>
<td>Emitter−Base Voltage</td>
<td>(V_{EBO})</td>
<td>−6.0</td>
<td>Vdc</td>
</tr>
<tr>
<td>Collector Current − Continuous (Note 1)</td>
<td>(I_C)</td>
<td>1.0</td>
<td>A</td>
</tr>
<tr>
<td>Collector Current − Peak (Note 1)</td>
<td>(I_{CM})</td>
<td>2.0</td>
<td>A</td>
</tr>
</tbody>
</table>

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Symbol</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Power Dissipation (Note 2)</td>
<td>(P_D)</td>
<td>1.5</td>
<td>W</td>
</tr>
<tr>
<td>Derate above 25°C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal Resistance, Junction−to−Ambient (Note 2)</td>
<td>(R_{UA})</td>
<td>78</td>
<td>°C/W</td>
</tr>
<tr>
<td>Total Power Dissipation (Note 3)</td>
<td>(P_D)</td>
<td>875</td>
<td>mW</td>
</tr>
<tr>
<td>Derate above 25°C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal Resistance, Junction−to−Ambient (Note 3)</td>
<td>(R_{UA})</td>
<td>138</td>
<td>°C/W</td>
</tr>
<tr>
<td>Junction and Storage Temperature Range</td>
<td>(T_J, T_{stg})</td>
<td>−65 to +150</td>
<td>°C</td>
</tr>
</tbody>
</table>

1. Reference SOA Curve
2. Surface−mounted on FR4 board using a 600 mm² pad area and 2 oz. Cu
3. Surface−mounted on FR4 board using a 100 mm² pad area and 2 oz. Cu
ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Symbol</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFF CHARACTERISTICS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collector–Emitter Breakdown Voltage (I_C = -1 mA, I_B = 0 A)</td>
<td>V_(BR)CEO</td>
<td>-80</td>
<td>-</td>
<td>-</td>
<td>V</td>
</tr>
<tr>
<td>Collector–Base Breakdown Voltage (I_C = -100 µA, I_E = 0 A)</td>
<td>V_(BR)ICBO</td>
<td>-100</td>
<td>-</td>
<td>-</td>
<td>V</td>
</tr>
<tr>
<td>Emitter–Base Breakdown Voltage (I_E = -10 µA, I_C = 0)</td>
<td>V_(BR)EBO</td>
<td>-5</td>
<td>-</td>
<td>-</td>
<td>V</td>
</tr>
<tr>
<td>Collector–Base Cutoff Current (V_CB = -30 V, I_C = 0)</td>
<td>I_CBO</td>
<td>-</td>
<td>-</td>
<td>-100</td>
<td>nA</td>
</tr>
<tr>
<td>Emitter–Base Cutoff Current (V_EB = -5 V, I_C = 0)</td>
<td>I_EBO</td>
<td>-</td>
<td>-</td>
<td>-100</td>
<td>nA</td>
</tr>
<tr>
<td>ON CHARACTERISTICS (Note 4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DC Current Gain</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(I_C = -5 mA, V_CE = -2.0 V)</td>
<td>h_FE</td>
<td>63</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>(I_C = -150 mA, V_CE = -2.0 V)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All Part Types</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BCP53M</td>
<td>63</td>
<td>-</td>
<td>-</td>
<td>250</td>
<td></td>
</tr>
<tr>
<td>BCP5310M</td>
<td>63</td>
<td>-</td>
<td>-</td>
<td>160</td>
<td></td>
</tr>
<tr>
<td>BCP5316M</td>
<td>100</td>
<td>-</td>
<td>-</td>
<td>250</td>
<td></td>
</tr>
<tr>
<td>(I_C = -500 mA, V_CE = -2.0 V)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All Part Types</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BCP53MTWG</td>
<td>40</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Collector–Emitter Saturation Voltage (I_C = -500 mA, I_B = -50 mA)</td>
<td>V_CE(sat)</td>
<td>-</td>
<td>-</td>
<td>-0.50</td>
<td>V</td>
</tr>
<tr>
<td>Base–Emitter Saturation Voltage (I_C = -500 mA, I_B = -50 mA)</td>
<td>V_BE(sat)</td>
<td>-</td>
<td>-</td>
<td>-2.0</td>
<td>V</td>
</tr>
<tr>
<td>Base–Emitter Turn–on Voltage (I_C = -500 mA, V_CE = -2.0 V)</td>
<td>V_BE(on)</td>
<td>-</td>
<td>-</td>
<td>-1.0</td>
<td>V</td>
</tr>
<tr>
<td>SMALL SIGNAL CHARACTERISTICS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transition Frequency (I_C = -50 mA, V_CE = -5.0 V, f = 100 MHz)</td>
<td>f_T</td>
<td>-</td>
<td>130</td>
<td>-</td>
<td>MHz</td>
</tr>
<tr>
<td>Output Capacitance (V_CB = 10 V, f = 1.0 MHz)</td>
<td>C_obo</td>
<td>-</td>
<td>12</td>
<td>-</td>
<td>pF</td>
</tr>
<tr>
<td>Input Capacitance (V_EB = -0.5 Vdc, I_C = 0, f = 1.0 MHz)</td>
<td>C_bo</td>
<td>-</td>
<td>110</td>
<td>-</td>
<td>pF</td>
</tr>
<tr>
<td>Input Impedance (I_C = -1.0 mA, V_CE = -10 Vdc, f = 1.0 kHz)</td>
<td>h_re</td>
<td>-</td>
<td>5</td>
<td>-</td>
<td>k</td>
</tr>
<tr>
<td>Voltage Feedback Ratio (I_C = -1.0 mA, V_CE = -10 Vdc, f = 1.0 kHz)</td>
<td>h_r</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>X 10^-4</td>
</tr>
<tr>
<td>Small–Signal Current Gain</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(I_C = -1.0 mA, V_CE = -10 Vdc, f = 1.0 kHz)</td>
<td>h_fe</td>
<td>-</td>
<td>200</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Output Admittance (I_C = -1.0 mA, V_CE = -10 Vdc, f = 1.0 kHz)</td>
<td>h_f</td>
<td>-</td>
<td>10</td>
<td>-</td>
<td>μmhos</td>
</tr>
<tr>
<td>Noise Figure</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(I_C = 0.2 mA, V_CE = 5.0 Vdc, R_S = 2.0 kΩ, f = 1.0 kHz, BW = 200 Hz)</td>
<td>NF</td>
<td>-</td>
<td>0.8</td>
<td>-</td>
<td>dB</td>
</tr>
<tr>
<td>SWITCHING CHARACTERISTICS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delay Time (V_CC = 30 Vdc, I_C = 150 mA, I_B1 = 15 mA)</td>
<td>t_d</td>
<td>-</td>
<td>18</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>Rise Time (V_CC = 30 Vdc, I_C = 150 mA, I_B1 = 15 mA)</td>
<td>t_r</td>
<td>-</td>
<td>32</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>Storage Time (V_CC = 30 Vdc, I_C = 150 mA, I_B1 = 15 mA, I_B2 = 15 mA)</td>
<td>t_s</td>
<td>-</td>
<td>660</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>Fall Time (V_CC = 30 Vdc, I_C = 150 mA, I_B1 = 15 mA, I_B2 = 15 mA)</td>
<td>t_f</td>
<td>-</td>
<td>50</td>
<td>-</td>
<td>ns</td>
</tr>
</tbody>
</table>

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

4. Pulse Condition: Pulse Width = 300 µs, Duty Cycle ≤ 2%.

ORDERING INFORMATION

<table>
<thead>
<tr>
<th>Device</th>
<th>Marking</th>
<th>Package</th>
<th>Shipping†</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCP53MTWG</td>
<td>3M</td>
<td>WDFNW3 (Pb–Free)</td>
<td>3000 / Tape & Reel</td>
</tr>
<tr>
<td>BCP5310MTWG</td>
<td>3N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BCP5316MTWG</td>
<td>3P</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSVBCP53MTWG*</td>
<td>3M</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSVBCP5310MTWG*</td>
<td>3N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSVBCP5316MTWG*</td>
<td>3P</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

*NSV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q100 Qualified and PPAP Capable.
TYPICAL CHARACTERISTICS

Figure 1. DC Current Gain

Figure 2. Collector Current vs. Collector Emitter Voltage

Figure 3. Collector Emitter Saturation Voltage

Figure 4. Base Emitter Saturation Voltage vs. Collector Current

Figure 5. BCP53M, Base Emitter Turn–On Voltage vs. Collector Current $V_{BE(on)}$

Figure 6. Input Capacitance
TYPICAL CHARACTERISTICS

Figure 7. Output Capacitance

Figure 8. Safe Operating Area

Figure 9. Transient Thermal Impedance from Junction–to–Ambient as a Function of Pulse Duration

Figure 10. Transient Thermal Impedance from Junction–to–Ambient as a Function of Pulse Duration

www.onsemi.com
MECHANICAL CASE OUTLINE

PACKAGE DIMENSIONS

WDFNW3 2x2, 1.3P
CASE 515AA
ISSUE A

DATE 26 JUL 2022

NOTES:
2. CONTROLLING DIMENSION: MILLIMETERS
3. DIMENSION b APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN G1 AND 0.30MM FROM THE TERMINAL TIP.
4. COPLANARITY APPLIES TO THE EXPOSED PADS AS WELL AS THE TERMINALS.

GENERIC MARKING DIAGRAM*

XX = Specific Device Code
M = Date Code
\(\ast \) = Pb-Free Package

(Not: Microdot may be in either location)

*This information is generic. Please refer to device data sheet for actual part marking. Pb–Free indicator, “G” or microdot “\(\ast \)”, may or may not be present. Some products may not follow the Generic Marking.

<table>
<thead>
<tr>
<th>MECHANICAL CASE OUTLINE</th>
<th>PACKAGE DIMENSIONS</th>
</tr>
</thead>
</table>

| DOCUMENT NUMBER: | 98AON33309H |
| DESCRIPTION: | WDFNW3 2x2, 1.3P |

Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.