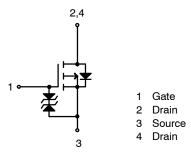


MOSFET – Power, P-Channel, Single ATPAK

-60 V, -35 A, 29.5 m Ω

ATP113

Features


- ON-Resistance $R_{DS(on)}1 = 22.5 \text{ m}\Omega \text{ (typ)}$
- 4 V Drive
- Protection Diode in
- Input Capacitance Ciss = 2400 pF (typ)
- This Device is a Pb-Free and Halogen Free

ABSOLUTE MAXIMUM RATINGS (Ta = 25°C) (Note 1)

Parameter	Symbol	Conditions	Value	Unit
Drain-to-Source Voltage	V_{DSS}		-60	٧
Gate-to-Source Voltage	V_{GSS}		±20	V
Drain Current (DC)	I _D		-35	Α
Drain Current (PW ≤ 10 µs)	I _{DP}	PW ≤ 10 μs, duty cycle ≤ 1%	-105	Α
Allowable Power Dissipation	P_{D}	Tc = 25°C	50	W
Channel Temperature	Tch		150	°C
Storage Temperature	Tstg		-55 to +150	°C
Avalanche Energy (Single Pulse) (Note 1)	E _{AS}		95	mJ
Avalanche Current (Note 2)	I _{AV}		-18	Α

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- 1. $V_{DD} = -10 \text{ V}$, $L = 500 \mu\text{H}$, $I_{AV} = -18 \text{ A}$
- 2. $L \le 500 \mu H$, Single pulse

ELECTRICAL CONNECTION

DPAK (Single Gauge) / ATPAK CASE 369AM

MARKING DIAGRAM

ATP113 = Specific Device Code
Y = Year of Production
M = Assembly Operation Mo

M = Assembly Operation Month
W = Work Week in the Month

ORDERING INFORMATION

Device	Package	Shipping [†]
ATP113-TL-H	DPAK / ATPAK (Pb-Free and Halide Free)	3000 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise specified)

			Value			
Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Drain to Source Breakdown Voltage	V(BR)DSS	$I_D = -1 \text{ mA}, V_{GS} = 0 \text{ V}$	-60	_	_	V
Zero-Gate Voltage Drain Current	I _{DSS}	$V_{DS} = -60 \text{ V}, V_{GS} = 0 \text{ V}$	-	-	-1	μΑ
Gate to Source Leakage Current	I _{GSS}	V _{GS} = +16 V, V _{DS} = 0 V	-	-	+10	μΑ
Cutoff Voltage	V _{GS} (off)	$V_{DS} = -10 \text{ V}, I_D = -1 \text{ mA}$	-1.2	_	-2.6	V
Forward Transfer Admittance	yfs	$V_{DS} = -10 \text{ V}, I_D = -18 \text{ A}$	-	37	-	S
Static Drain to Source On-State Resistance	R _{DS} (on)1	I _D = -18 A, V _{GS} = -10 V	-	22.5	29.5	mΩ
	R _{DS} (on)2	$I_D = -9 \text{ A}, V_{GS} = -4.5 \text{ V}$	-	27	38	mΩ
	R _{DS} (on)3	$I_D = -5 \text{ A}, V_{GS} = -4 \text{ V}$	-	29	44	mΩ
Input Capacitance	Ciss	V _{DS} = -20 V, f = 1 MHz	-	2400	-	pF
Output Capacitance	Coss		-	250	-	pF
Reverse Transfer Capacitance	Crss		-	195	-	pF
Turn-ON Delay Time	t _d (on)	See specified Test Circuit.	-	15	-	ns
Rise Time	t _r		-	125	-	ns
Turn-OFF Delay Time	t _d (off)		_	250	_	ns
Fall Time	t _f		-	200	-	ns
Total Gate Charge	Qg	$V_{DS} = -30 \text{ V}, V_{GS} = -10 \text{ V}, I_D = -35 \text{ A}$	-	55	_	nC
Gate to Source Charge	Qgs	1	_	7.5	_	nC
Gate to Drain "Miller" Charge	Qgd	1	-	12	-	nC
Diode Forward Voltage	V_{SD}	I _S = -35 A, V _{GS} = 0 V	-	-0.98	-1.5	V

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

Switching Time Test Circuit

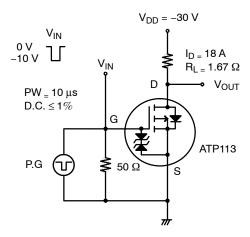
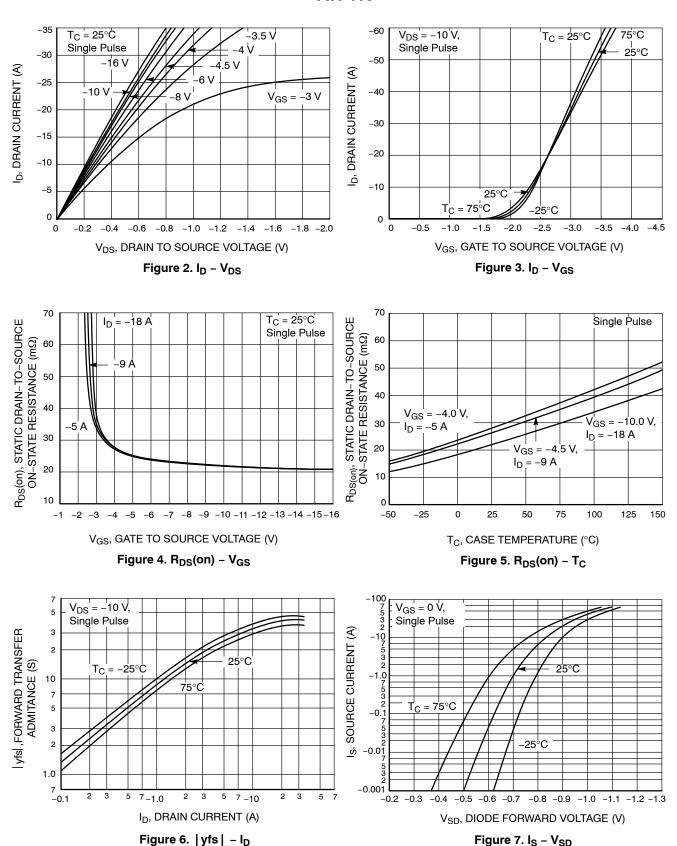
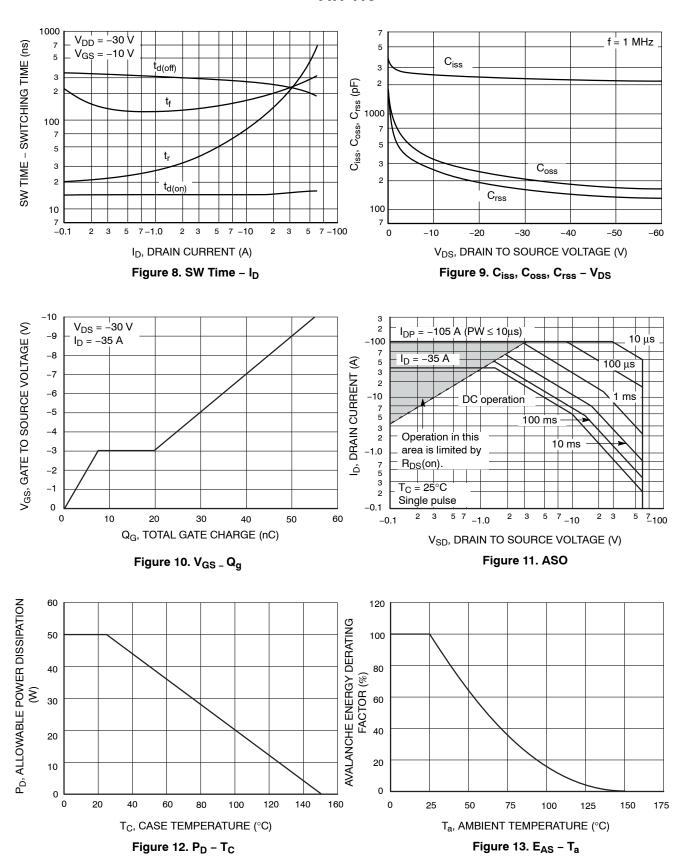
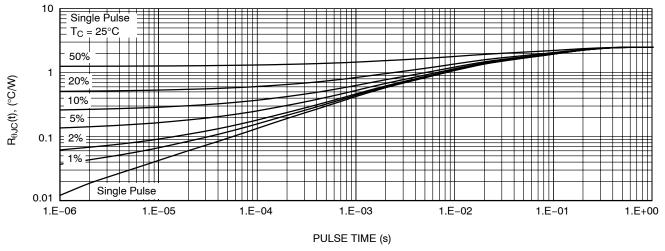
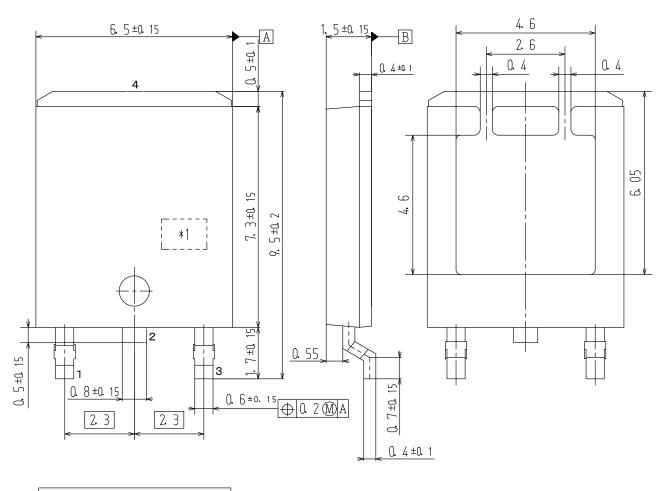
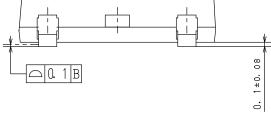




Figure 1. Switching Time Test Circuit


Figure 14. Thermal Response

DPAK (Single Gauge) / ATPAK CASE 369AM ISSUE O

DATE 29 FEB 2012

Pin2 is idle pin with electrical designation only carried

DOCUMENT NUMBER:	98AON67243E	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	DPAK (SINGLE GAUGE) / ATPAK		PAGE 1 OF 1	

onsemi and ONSEMi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales