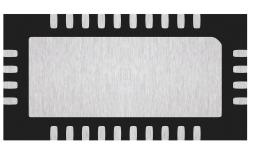
onsemi

RDM-Series 1 x 12 SiPM Array


ArrayRDM-0112A20-QFN-TR (1)

The ArrayRDM-0112A20-QFN-TR(1) is a monolithic 1×12 array of Silicon Photomultiplier (SiPM) pixels based on the market-leading RDM process. The RDM process has been specifically developed to create products that give high PDE at the NIR wavelengths used for LiDAR and 3D ranging applications. For details of Automotive Qualification, please contact **onsemi**.

Table 1. KEY SENSOR AND PACKAGE SPECIFICATIONS

Parameter	Value	Comments
Silicon Process	RDM	
Number of Pixels	12	
Array Configuration	1 × 12	Monolithic silicon array
Pixel Size	$1.12 \times 0.47 \text{ mm}$	
Pixel Pitch	0.49 mm	
Microcell Size	20 µm	
Number of Microcells per Pixel	806	
Package Size	$5.2\times10.0\times1.85\text{ mm}$	$\begin{array}{c} W \times L \times H \\ \text{(see case outline on page 8} \\ \text{for more details)} \end{array}$
Output Type	Analog	Standard output per pixel

The ArrayRDM-0112A20-QFN-TR Product Case 485FZ

ORDERING INFORMATION

See detailed ordering and shipping information in the ordering information section on page 6 of this data sheet.

Table 2. ABSOLUTE MAXIMUM RATINGS

Parameter	Value	Unit	Comment
Maximum Overvoltage (Vov)	9	V	All temperatures
Maximum Current	20	mA	For entire array (12 channels) at recommended Vov
Maximum Storage Temperature	125	°C	
Functional Operating Temperature Range	-40 to 105	°C	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

NOTE: Vop = Vbr + Vov. Vbr is temperature dependent. Vop is also temperature dependent.

Table 3. ELECTRICAL SPECIFICATIONS

	-40)°C	21	°C	105	5°C	
Parameter	Min	Max	Min	Мах	Min	Мах	Unit
Breakdown Voltage (Vbr)	19.5	20.5	21.0	22.0	23.0	33.0	V

NOTES:Vbr is defined as the intercept between the below-breakdown leakage current and the linear fit to the square root of the dark current above breakdown.

Vbr is temperature dependent. At 105°C the Vbr range within a lot will be 1 V. Refer to per lot data for exact range.

Vop = Vbr + Vov. Vop is also temperature dependent.

Table 4. BIASING SPECIFICATIONS

Parameter	Value	Unit	Comment
Recommended Overvoltage (Vov)	8	V	Vov across full operating temperature range
Maximum Overvoltage (Vov)	9	V	All temperatures

NOTE: Operating bias voltage (Vop) = Vbr + Vov

Table 5. CALCULATED ELECTRICAL PARAMETERS

Parameter	Typical Value	Unit	Comment
Terminal Capacitance	20	pF	Per SiPM channel
Saturation Current (continuous)	2.8	mA	Per SiPM channel
Saturation Current (pulse)	6.2	mA	Per SiPM channel

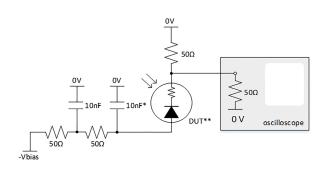
NOTES:Terminal capacitance is calculated from Gain of a typical device at recommended Vov.

Saturation current is calculated from Gain and recovery time of a typical device at recommended Vov.

Table 6. PACKAGE SPECIFICATIONS

Parameter	Value	Unit	Comment
ESD – HBM	500	V	Class 1B
ESD – CDM	500	V	Class C2A
θJC	4	°C/W	Junction-to-Case thermal resistance is simulated with a heat sink at 25°C mounted on bottom of the package
θ_{JA}	58	°C/W	Junction-to-Ambient thermal resistance is simulated with a 1S0P test PCB according to JESD51-7 standard
MSL	4		All variants

	Typical va		
Parameter	Vop = 29.0 V	Vop = 30.0 V	Unit
PDE @ 905 nm	15.6	16.8	%
Crosstalk	22	27	%
Thermal DCR per pixel	0.12	0.13	Mcps
Total DCR per pixel	0.13	0.14	Mcps
Delayed Crosstalk	7	9	%
1PE Level (via reference circuit)	47	54	mV
Gain	1.1x10 ⁶	1.2x10 ⁶	
Rise Time (20%-80%)	190	188	ps
Recovery Time (90%–10%)	49	51	ns


Table 7. TYPICAL SIPM PERFORMANCE SPECIFICATIONS

NOTE: Table shows typical performance parameters at 21°C.

90% – 10% Recovery Time Parameter

The recovery time indicates the time taken for the microcells to recover to fully biased state. Recovery time is measured by applying a low power 905 nm 50 ps laser pulse at the SiPM and measuring the resulting pulse shape on the standard output. The 90% to 10 % recovery time is the time interval between the signal crossing the 90% threshold and

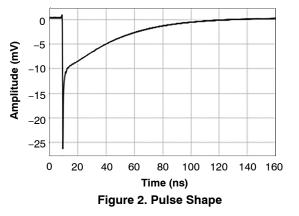

the 10% threshold, relative to the peak amplitude. Note that recovery time will depend on a number of factors including the circuit. The circuit used for this measurement is pictured in Figure 1. Typical pulse shapes for both the standard and fast output, also using this circuit, are shown in Figure 2.

Figure 1. The Circuit used for Recovery Time Parameter Measurement

1PE Measurement Details

The single photoelectron pulse height is characterized by measuring the amplified 1PE signal using the measurement

circuit in Figure 3. The measured values include the gain due to the amplifiers, which is $\sim 100X$.

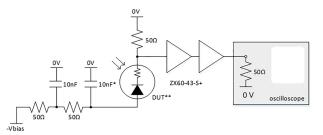


Figure 3. Measurement Circuit for Single Photoelectron Measurement Gain is ~ 100x

* Additional decoupling not shown.

** Single SiPM channel shown only.

PIN ASSIGNMENT

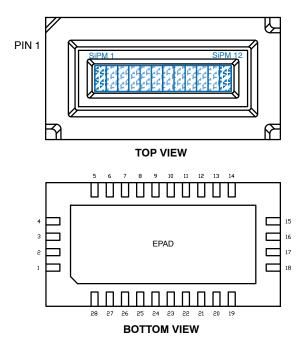


Figure 4. Device and Pin Numbering

Pin #	Pin Name	Pin Function
1	Cathode 1	SiPM 1 standard output
28	Cathode 2	SiPM 2 standard output
27	Cathode 3	SiPM 3 standard output
26	Cathode 4	SiPM 4 standard output
25	Cathode 5	SiPM 5 standard output
24	Cathode 6	SiPM 6 standard output
23	Cathode 7	SiPM 7 standard output
22	Cathode 8	SiPM 8 standard output
21	Cathode 9	SiPM 9 standard output
20	Cathode 10	SiPM 10 standard output
19	Cathode 11	SiPM 11 standard output
18	Cathode 12	SiPM 12 standard output
EPAD	Anode	Common Anode
2–17	NC	No Connect

APPLICATION ADVICE

The ArrayRDM-0112A20-QFN-TR(1) is formed of a linear array of 12 SiPM pixels. The QFN package provides a connection to each pixel cathode (for access to the individual signals) and a common anode. The common anode allows the provision of a single bias supply for all 12 pixels. The recommended test connections and biasing are as per the evaluation board that is detailed in the following section.

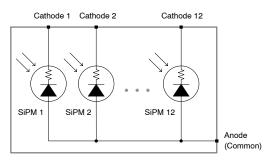
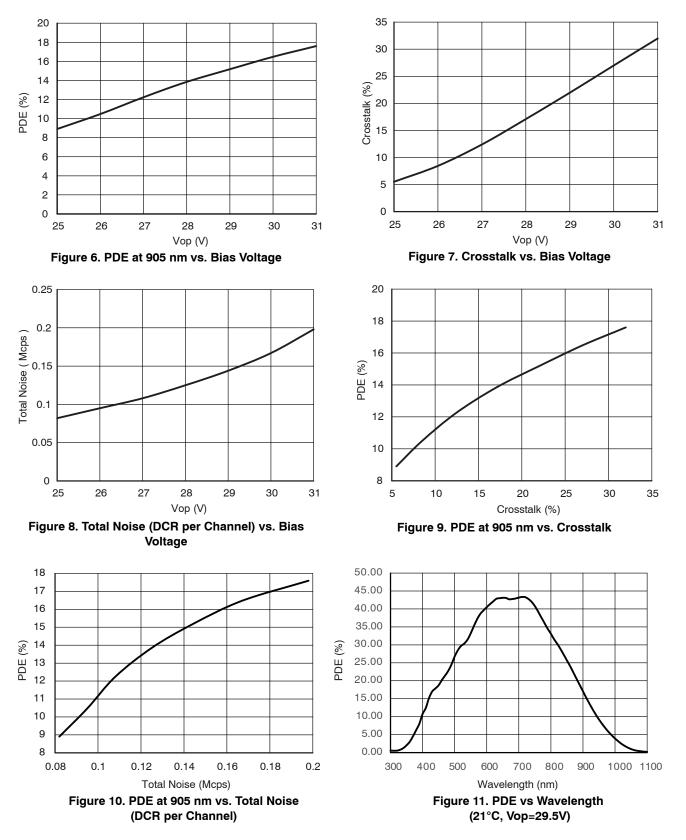



Figure 5. Array Schematic Showing Pixel Connections

TYPICAL SIPM PERFORMANCE PLOTS

Below plots show the SiPM performance characteristics for a typical device at room temperature. For detailed characterization information please contact **onsemi**.

EVALUATION BOARD

The ArrayRDM-0112A20-GEVB evaluation board consists of:

- ArrayRDM-0112A20-QFN SiPM array
- 12 U.FL connectors for access to each pixel cathode for signal readout
- An SMA connector for applying the bias to the common anode
- Bias filtering circuit
- Decoupling capacitors (12 x 10 nF and 4 x 100 nF decoupling capacitors from anode to ground not shown)

This product allows users to quickly and easily set up an evaluation of the array product.

Note that a negative bias supply should be suppled via the SMA connector (J13) and the U.FL connectors (J1 to J12) should be 50 Ω terminated.

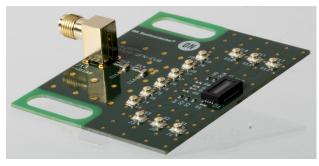


Figure 12. ArrayRDM-0112A20-GEVB Top Side View Showing the 1x12 Sensor

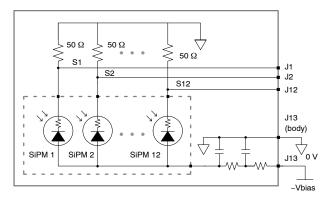


Figure 13. ArrayRDM-0112A20-GEVB Board Schematic

Connector	Style
J1–J12	U.FL Receptacle (Hirose U.FL-R-SMT)
J13	SMA Jack (F)

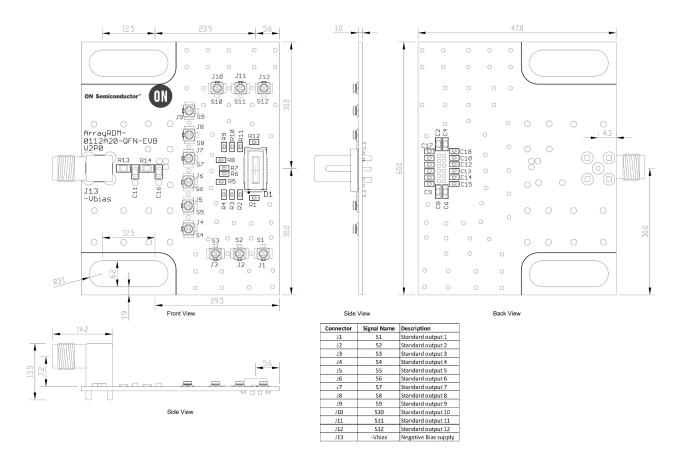
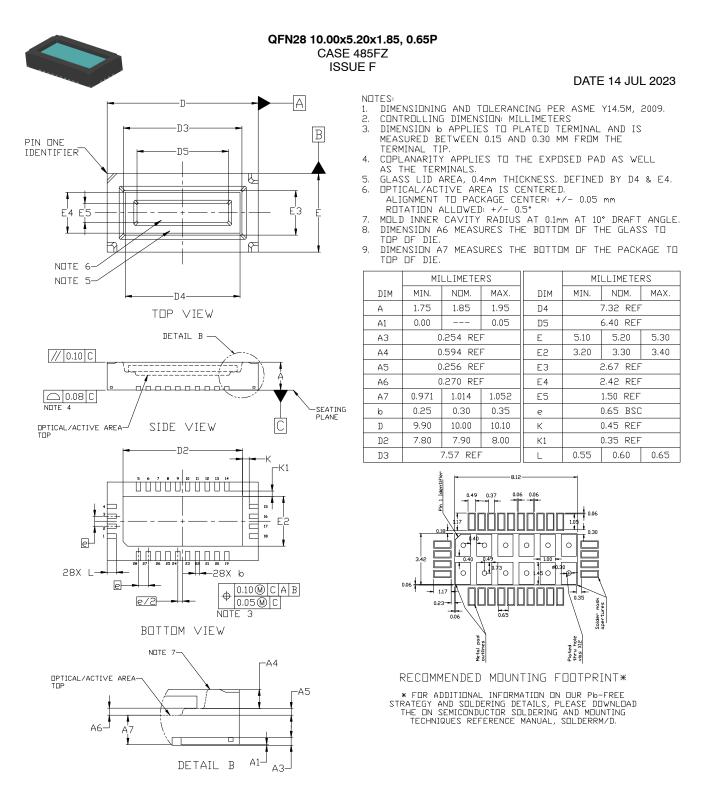

ORDERING INFORMATION

Table 8. ORDERING INFORMATION


Part Number	Product Description	Shipping Format
ArrayRDM-0112A20-QFN-TR	Monolithic 1×12 array of NIR sensitive SiPM pixels formed using the RDM process. Individual cathode connection per pixel and	Tape and Reel
ArrayRDM-0112A20-QFN-TR1	a common anode available via the 28-pin QFN package.	Cut Tape
ArrayRDM-0112A20-QFN-TR-E	Prototype sample	Cut Tape
ArrayRDM-0112A20-GEVB	Evaluation board consisting of an ArrayRDM-0112A20-QFN mounted onto PCB. A U.FL connector gives access to each pixel cathode and fast output. The bias is supplied via an SMA connector to the common anode.	ESD Package

NOTE: For sample information please contact onsemi.

EVALUATION BOARD DRAWING

onsemi

DOCUMENT NUMBER:	98AON04325H Electronic versions are uncontrolled except when accessed directly from the Docur Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in I		
DESCRIPTION:	QFN28 10.00x5.20x1.85, 0.65P		PAGE 1 OF 1

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>